3.已知集合A={-1,i}為虛數(shù)單位,則下列選項(xiàng)正確的是( 。
A.|-i|∈AB.$\frac{1}{i}∈A$C.i3∈AD.$\frac{1+i}{1-i}∈A$

分析 利用復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義、模的計(jì)算公式即可得出.

解答 解:A.|-i|=1∉A.
B.$\frac{1}{i}$=$\frac{-i}{-i•i}$=-i∉A.
C.i3=-i∉A.
D.$\frac{1+i}{1-i}$=$\frac{(1+i)^{2}}{(1-i)(1+i)}$=$\frac{2i}{2}$=i∈A.
故選:D.

點(diǎn)評 本題考查了復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義、模的計(jì)算公式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若x,y∈R+,且$\sqrt{x}$+$\sqrt{y}$≤a$\sqrt{x+y}$恒成立,則a的最小值為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若x,y∈R,且x=$\sqrt{1-y2}$,則$\frac{y+2}{x+1}$的取值范圍是[$\frac{3}{4}$,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)函數(shù)f(x)=asinx+x2,若f(1)=2,則f(-1)的值為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知f(x)=x2-bx+a,且f(0)=3,f(2-x)=f(x),則下列關(guān)系成立的是( 。
A.f(bx)≥f(axB.f(bx)≤f(ax
C.f(bx)<f(axD.f(bx)與f(ax)的大小關(guān)系不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)$f(x)=\frac{{{x^2}+2x+a}}{x},x∈[{1,+∞})$
(1)當(dāng)$a=\frac{1}{2}$時(shí),判斷函數(shù)f(x)在[1,+∞)的單調(diào)性,并加以證明.
(2)若對任意x∈[1,+∞),f(x)>0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)的定義域是[0,1],則函數(shù)F(x)=f[log$\frac{1}{2}$(3-x)]的定義域( 。
A.{x|0≤x<1}B.{x|2≤x<$\frac{5}{2}$}C.{x|2≤x≤$\frac{5}{2}$}D.{x|2<x≤3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若函數(shù)f(x)=x2+mx+m-1的一個(gè)零點(diǎn)在[0,3]上,則m的取值范圍是[-2,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)$f(x)=-\frac{1}{a}+\frac{2}{x}(x>0)$
(1)判斷f(x)在(0,+∞)上的增減性,并證明你的結(jié)論
(2)解關(guān)于x的不等式f(x)>0
(3)若f(x)+2x≥0在(0,+∞)上恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案