(1)求曲線在點(diǎn)(1,1)處的切線方程;

 。2)運(yùn)動(dòng)曲線方程為,求t=3時(shí)的速度。

(1)曲線在(1,1)處的切線方程為y=1

 。2)  。


解析:

(1),

  ,即曲線在點(diǎn)(1,1)處的切線斜率k=0

  因此曲線在(1,1)處的切線方程為y=1

 。2)

  。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為
x=-
5
-
2
2
t
y=
5
+
2
2
t
(t為參數(shù))若以O(shè)點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,則曲線C的極坐標(biāo)方程為ρ=4cos θ.
(1)求曲線C的直角坐標(biāo)方程及直線l的普通方程;
(2)將曲線C上各點(diǎn)的橫坐標(biāo)縮短為原來(lái)的
1
2
,再將所得曲線向左平移1個(gè)單位,得到曲線CΘ,求曲線CΘ上的點(diǎn)到直線l的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)

(1)求曲線在點(diǎn)(0,f(0))處的切線方程;w.w.w.k.s.5.u.c.o.m          

(2)求函數(shù)的單調(diào)區(qū)間;

(3)若函數(shù)在區(qū)間(-1,1)內(nèi)單調(diào)遞增,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年湖北省天門市高三模擬考試(二)理科數(shù)學(xué) 題型:解答題

(本小題滿分12分)

    已知函數(shù)在[-1,1]上是減函數(shù).

   (1)求曲線在點(diǎn)(1,)處的切線方程;

   (2)若在x∈[-1,1]上恒成立,求的取值范圍;

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011屆湖北省天門市高三模擬考試(二)理科數(shù)學(xué) 題型:解答題

(本小題滿分12分)
已知函數(shù)在[-1,1]上是減函數(shù).
(1)求曲線在點(diǎn)(1,)處的切線方程;
(2)若在x∈[-1,1]上恒成立,求的取值范圍;

查看答案和解析>>

同步練習(xí)冊(cè)答案