【題目】將一顆質(zhì)地均勻的骰子先后拋擲2次,觀察其向上的點(diǎn)數(shù),分別記為.
(1)若記“”為事件,求事件發(fā)生的概率;
(2)若記“”為事件,求事件發(fā)生的概率.
【答案】(1)(2)
【解析】
試題分析:(1)所有基本事件的種數(shù)為36,列舉可得到滿足的基本事件種數(shù),求其比值可得到概率值;(2)判斷的基本事件種數(shù),與所有基本事件種數(shù)求比值即可
試題解析:將骰子拋擲一次,它出現(xiàn)的點(diǎn)數(shù)有這六種結(jié)果.先后拋擲2次骰子,第一次骰子向上的點(diǎn)數(shù)有6種可能的結(jié)果,對于每一種,第二次又有6種可能出現(xiàn)的結(jié)果,于是基本事件一共有
(種).
(1)記“”為事件,則事件發(fā)生的基本事件有5個,所以所求的概率為
(2)記“”為事件,則事件發(fā)生的基本事件有6個,所以所求的概率為
答:事件發(fā)生的概率為,事件發(fā)生的概率為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在育民中學(xué)舉行的電腦知識競賽中,將九年級兩個班參賽的學(xué)生成績(得分均為整數(shù))進(jìn)行整理后分成五組,繪制如圖所示的頻率分布直方圖.已知圖中從左到右的第一、第三、第四、第五小組的頻率分別是0.30,0.15,0.10,0.05,第二小組的頻數(shù)是40.
(1)求第二小組的頻率,并補(bǔ)全這個頻率分布直方圖;
(2)求這兩個班參賽的學(xué)生人數(shù)是多少;
(3)這兩個班參賽學(xué)生的成績的中位數(shù)應(yīng)落在第幾小組內(nèi).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ,
(1)若曲線在點(diǎn)處的切線為,求的值;
(2)討論函數(shù)的單調(diào)性;
(3)設(shè)函數(shù),若至少存在一個,使得成立,求實(shí)數(shù)的取值范.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,且曲線的左焦點(diǎn)在直線上.
(1)若直線與曲線交于兩點(diǎn),求的值;
(2)求曲線的內(nèi)接矩形的周長的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線:,圓:.
(1)判斷直線與圓的位置關(guān)系,并證明你的結(jié)論;
(2)直線過直線的定點(diǎn)且,若與圓交與兩點(diǎn),與圓交與 兩點(diǎn),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某城市有一塊半徑為40的半圓形(以為圓心,為直徑)綠化區(qū)域,現(xiàn)計(jì)劃對其進(jìn)行改建,在的延長線上取點(diǎn),使,在半圓上選定一點(diǎn),改建后的綠化區(qū)域由扇形區(qū)域和三角形區(qū)域組成,其面積為,設(shè).
(1)寫出關(guān)于的函數(shù)關(guān)系式,并指出的取值范圍;
(2)試問多大時,改建后的綠化區(qū)域面積最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù),若不等式的解集為(1,4),且方程f(x)=x有兩個相等的實(shí)數(shù)根。
(1)求f(x)的解析式;
(2)若不等式f(x)>mx在上恒成立,求實(shí)數(shù)m的取值范圍;
(3)解不等式
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD∥QA,QA=AB=PD.
(I)證明:平面PQC⊥平面DCQ
(II)求二面角Q-BP-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在扶貧活動中,為了盡快脫貧(無債務(wù))致富,企業(yè)甲將經(jīng)營狀況良好的某種消費(fèi)品專賣店以5.8萬元的優(yōu)惠價格轉(zhuǎn)讓給了尚有5萬元無息貸款沒有償還的小型企業(yè)乙,并約定從該店經(jīng)營的利潤中,首先保證企業(yè)乙的全體職工每月最低生活費(fèi)的開支3 600元后,逐步償還轉(zhuǎn)讓費(fèi)(不計(jì)息).在甲提供的資料中:①這種消費(fèi)品的進(jìn)價為每件14元;②該店月銷量Q(百件)與銷售價格P(元)的關(guān)系如圖所示;③每月需各種開支2 000元.
(1)當(dāng)商品的價格為每件多少元時,月利潤扣除職工最低生活費(fèi)的余額最大?并求最大余額;
(2)企業(yè)乙只依靠該店,最早可望在幾年后脫貧?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com