17.方程x2+xy=x的曲線是(  )
A.兩條直線B.一條直線
C.一個點D.一個點和一條直線

分析 方程等價變形為即 x(x+y-1)=0,化簡可得 x=0或 x+y-1=0,表示兩條直線.

解答 解:方程x2+xy=x 即 x(x+y-1)=0,
化簡可得 x=0或 x+y-1=0.
而x=0表示一條直線,x+y-1=0也表示一條直線,
故方程x2+xy=x的曲線是兩條直線,
故選:A.

點評 本題主要考查方程的曲線,化簡方程,將方程進行等價變形,是解題的關(guān)鍵,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

7.如圖,OM,ON是兩條海岸線,Q為海中一個小島,A為海岸線OM上的一個碼頭.已知tan∠MON=-3,OA=6km,Q到海岸線OM,ON的距離分別為3km,$\frac{{6\sqrt{10}}}{5}$km.現(xiàn)要在海岸線ON上再建一個碼頭,使得在水上旅游直線AB經(jīng)過小島Q.
(1)求水上旅游線AB的長;
(2)若小島正北方向距離小島6km處的海中有一個圓形強水波P,從水波生成th時的半徑為r=3$\sqrt{at}$(a為大于零的常數(shù)).強水波開始生成時,一游輪以18$\sqrt{2}$km/h的速度自碼頭A開往碼頭B,問實數(shù)a在什么范圍取值時,強水波不會波及游輪的航行.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.我國是世界上嚴重缺水的國家.某市為了制定合理的節(jié)水方案,對居民用水情況進行了調(diào)查,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸).將數(shù)據(jù)按照[0,0.5),[0.5,1),…,[4,4.5]分成9組,制成了如圖所示的頻率分布直方圖.
(Ⅰ)求直方圖中a的值;
(Ⅱ)設(shè)該市有30萬居民,估計全市居民中月均用水量不低于3噸的人數(shù),并說明理由;
(Ⅲ)估計居民月均水量的中位數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知U=R,集合A={x|x≥0},B={x|2≤x≤4},則A∩(∁UB)=( 。
A.{x|x≤0}B.{x|2≤x≤4}C.{x|0<x≤2或x≥4}D.{x|0≤x<2或x>4}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.如圖是某公司10個銷售店某月銷售某產(chǎn)品數(shù)量(單位:臺)的莖葉圖,則數(shù)據(jù)落在區(qū)間[20,30)內(nèi)的概率為( 。
A.0.2B.0.4C.0.5D.0.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.求下列函數(shù)的值域.
(1)y=$\sqrt{x}$-1;
(2)y=x2-2x+3,x∈[0,3);
(3)y=2x-$\sqrt{x-1}$;
(4)y=$\frac{2x+1}{x-3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.設(shè)函數(shù)f(x)的定義域是R,且f(x)>0,對于任意實數(shù)m,n恒有f(m+n)=f(m)f(n),當x>0時,f(x)>1,試判斷f(x)在R上的單調(diào)性,并給以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.如果lg3,lg(sinx-$\frac{1}{2}$),lg(1+y)依次構(gòu)成等差數(shù)列,那么(  )
A.y有最小值為-1,最大值為-$\frac{11}{12}$B.y有最大值為1,無最小值
C.y無最小值,有最大值為-$\frac{11}{12}$D.y有最小值為-1,最大值為1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知函數(shù)f(x)=$\left\{\begin{array}{l}{f(x+2)(x<2)}\\{lo{g}_{3}x(x≥2)}\end{array}\right.$,則f(-1)的值為( 。
A.1B.-1C.$\frac{1}{3}$D.0

查看答案和解析>>

同步練習冊答案