19.函數(shù)y=$\frac{k}{x-2}$,(k>0)在[4,6]上的最大值為1,則k的值是( 。
A.1B.2C.3D.4

分析 確定函數(shù)的單調(diào)性,利用函數(shù)在[4,6]上的最大值為1,即可求出k的值.

解答 解:函數(shù)y=$\frac{k}{x-2}$,(k>0)在[4,6]上的最大值為1
由題意,k>0時(shí),函數(shù)y=$\frac{k}{x-2}$在[4,6]上單調(diào)遞減,
∴$\frac{k}{4-2}$=1,
∴k=2,
故選:B.

點(diǎn)評(píng) 本題考查函數(shù)的單調(diào)性與最大值,正確運(yùn)用函數(shù)的單調(diào)性是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.函數(shù)f(x)=$\frac{{2}^{x}+a}{{2}^{x}-a}$為奇函數(shù),則實(shí)數(shù)a的值為1或-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.如圖所示的莖葉圖表示甲、乙兩人在5次綜合測(cè)評(píng)中的成績(jī),其中一個(gè)數(shù)字被污損,則甲的平均成績(jī)不低于乙的平均成績(jī)的概率為$\frac{9}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.某種產(chǎn)品的廣告費(fèi)支出x與銷(xiāo)售額y(單位:百萬(wàn)元)之間有如表對(duì)應(yīng)數(shù)據(jù):
x24568
y3040605070
(1)畫(huà)出散點(diǎn)圖;
(2)求線性回歸方程;
(3)預(yù)測(cè)當(dāng)廣告費(fèi)支出7(百萬(wàn)元)時(shí)的銷(xiāo)售額.
參考公式:用最小二乘法求線性回歸方程,其中系數(shù)$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline{xy}}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.判斷函數(shù)f(x)=$\frac{ax}{{{x^2}-1}}$(a≠0)在區(qū)間(-1,1)上的奇偶性和單調(diào)性,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.集合A={x|3-a≤x≤2+a},B={x|x<1或x>6},
(1)當(dāng)a=3時(shí),求集合A∩(∁RB).
(2)若a>0,且A∩B=∅,求實(shí)數(shù)a的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.設(shè)l是一條直線,α,β,γ是不同的平面,則在下列命題中,假命題是④.
①如果α⊥β,那么α內(nèi)一定存在直線平行于β
②如果α不垂直于β,那么α內(nèi)一定不存在直線垂直于β
③如果α⊥γ,β⊥γ,α∩β=l,那么l⊥γ
④如果α⊥β,l與α,β都相交,那么l與α,β所成的角互余.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.函數(shù)f(x)=$\frac{{\sqrt{1-{x^2}}}}{{2-\left|{x+2}\right|}}$是奇函數(shù)(“奇”,“偶”,“非奇非偶”中選一合適的填空).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,三棱錐P-ABC中,PC⊥平面ABC,PC=3,∠ACB=$\frac{π}{2}$,D,E分別為線段AB,BC上的點(diǎn),CD=DE=$\sqrt{2}$,CE=2EB=2,
(Ⅰ)證明:DE⊥平面PCD;
(Ⅱ)求三棱錐P-ABC的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案