設 數列滿足: .
(1)求證:數列是等比數列(要指出首項與公比);
(2)求數列的通項公式.
科目:高中數學 來源: 題型:解答題
若數列滿足條件:存在正整數,使得對一切都成立,則稱數列為級等差數列.
(1)已知數列為2級等差數列,且前四項分別為,求的值;
(2)若為常數),且是級等差數列,求所有可能值的集合,并求取最小正值時數列的前3項和;
(3)若既是級等差數列,也是級等差數列,證明:是等差數列.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設數列{an}的前n項和為Sn,數列{Sn}的前n項和為Tn,滿足Tn=2Sn-n2,n∈N﹡.
(1)求a1的值;
(2)求數列{an}的通項公式.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在個實數組成的行列數表中,先將第一行的所有空格依次填上,,,再將首項為公比為的數列依次填入第一列的空格內,然后按照“任意一格的數是它上面一格的數與它左邊一格的數之和”的規(guī)律填寫其它空格
| 第1列 | 第2列 | 第3列 | 第4列 | | 第列 |
第1行 | | |||||
第2行 | | | | | | |
第3行 | | | | | | |
第4行 | | | | | | |
| | | | | | |
第行 | | | | | |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知數列{an}是等差數列,數列{bn}是等比數列,且對任意的,都有.
(1)若{bn }的首項為4,公比為2,求數列{an+bn}的前n項和Sn;
(2)若 ,試探究:數列{bn}中是否存在某一項,它可以表示為該數列中其它項的和?若存在,請求出該項;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com