已知函數(shù)數(shù)學公式數(shù)學公式兩圖象的對稱軸完全相同,則ω的值為________.

2
分析:求出函數(shù) 的對稱軸,利用對稱軸完全相同確定ω的值,
解答:函數(shù)的對稱軸方程為: k∈Z,即x= k∈Z,
函數(shù)的對稱軸方程為: k∈Z,
因為函數(shù)兩圖象的對稱軸完全相同,
所以所以?=2.
故答案為:2.
點評:本題是基礎題,考查三角函數(shù)的對稱軸方程的求法,注意兩個函數(shù)的對稱軸方程相同的應用,找出一個對稱軸方程就滿足題意,考查計算能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=aex,g(x)=lnx-lna,其中a為常數(shù),且函數(shù)y=f(x)和y=g(x)的圖象在其與兩坐標軸的交點處的切線相互平行.若關于x的不等式
x-m
g(x)
x
對任意不等于1的正實數(shù)都成立,則實數(shù)m的取值集合是
{1}
{1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3+ax2+bx+c在x=0和x=2處取得極值,且函數(shù)y=f(x)的圖象經過點(1,0).
(1)求函數(shù)f(x)的解析式;
(2)設A、B為函數(shù)y=f(x)圖象上任意相異的兩個點,試判定直線AB和直線4x+y-3=0的位置關系并說明理由;
(3)設函數(shù)g(x)=x2+mx+6,若對任意t∈[-2,2]且x∈[-2,2],f(t)≤g(x)恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•順義區(qū)二模)已知函數(shù)f(x)=2aex+1,g(x)=lnx-lna+1-ln2,其中a為常數(shù),e=2.718…,函數(shù)y=f(x)的圖象與坐標軸交點處的切線為l1,函數(shù)y=g(x)的圖象與直線y=1交點處的切線為l2,且l1∥l2
(Ⅰ)若對任意的x∈[1,5],不等式x-m>
x
f(x)-
x
成立,求實數(shù)m的取值范圍.
(Ⅱ)對于函數(shù)y=f(x)和y=g(x)公共定義域內的任意實數(shù)x.我們把|f(x0)-g(x0)|的值稱為兩函數(shù)在x0處的偏差.求證:函數(shù)y=f(x)和y=g(x)在其公共定義域的所有偏差都大于2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若直角坐標平面內的兩個點P和Q滿足條件:①P和Q都在函數(shù)y=f(x)的圖象上;②P和Q關于原點對稱,則稱點對[P,Q]是函數(shù)y=f(x)的一對“友好點對”([P,Q]與[Q,P]看作同一對“友好點對”).已知函數(shù)f(x)=
log2x,x>0
-x2-4x,x≤0
,則此函數(shù)的“友好點對”有( 。

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆廣東省高一上學期期末考試數(shù)學試卷 題型:解答題

 

(本題滿分14分)已知函數(shù)),將的圖象向右平移兩個單位,得到函數(shù)的圖象,函數(shù)與函數(shù)的圖象關于直線對稱.

(1)求函數(shù)的解析式;

(2)若方程上有且僅有一個實根,求的取值范圍;

(3)設,已知對任意的恒成立,求的取值范圍.

 

查看答案和解析>>

同步練習冊答案