10.求函數(shù)y=x+$\frac{1}{2(x-1)^{2}}$(x>1)的最小值.

分析 由x>1可得x-1>0,即有y=(x-1)+$\frac{1}{2(x-1)^{2}}$+1=$\frac{x-1}{2}$+$\frac{x-1}{2}$+$\frac{1}{2(x-1)^{2}}$+1,運(yùn)用三元均值不等式,即可得到所求最小值.

解答 解:由x>1可得x-1>0,
即有y=(x-1)+$\frac{1}{2(x-1)^{2}}$+1
=$\frac{x-1}{2}$+$\frac{x-1}{2}$+$\frac{1}{2(x-1)^{2}}$+1
≥3$\root{3}{\frac{(x-1)^{2}}{4}•\frac{1}{2(x-1)^{2}}}$+1=$\frac{5}{2}$.
當(dāng)且僅當(dāng)(x-1)3=1,即x=2時(shí),取得最小值$\frac{5}{2}$.

點(diǎn)評(píng) 本題考查函數(shù)的最值的求法,注意運(yùn)用變形的技巧和基本不等式,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.設(shè)A是三角形的一個(gè)內(nèi)角且cos(π+A)=$\frac{{\sqrt{3}}}{2}$,那么cos($\frac{π}{2}$+A)的值是( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$-\frac{1}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知正實(shí)數(shù)a,b滿足$\frac{2}{a+2}$+$\frac{1}{a+2b}$=1,則a+b的取值范圍是[$\sqrt{2}$+$\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.函數(shù)f(x)=$\sqrt{2-4x}$+2$\sqrt{x+4}$的最大值為m,若正實(shí)數(shù)a,b滿足a+b=m,則$\frac{4}{a}$+$\frac{9}$的最小值為$\frac{25}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.若兩個(gè)等差數(shù)列{an},{bn}的前n項(xiàng)和分別為Sn,Tn對(duì)任意的n∈N*,都有$\frac{{S}_{n}}{{T}_{n}}$=$\frac{2n-1}{4n-3}$,則$\frac{{a}_{4}}{_{2}+_{6}}$的值是( 。
A.$\frac{23}{50}$B.$\frac{25}{49}$C.$\frac{13}{50}$D.$\frac{13}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.用比較法證明:$\frac{1}{3}$≤$\frac{{x}^{2}-x+1}{{x}^{2}+x+1}$≤3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.若$\overrightarrow{a}$與$\overrightarrow$是共線向量,$\overrightarrow$與$\overrightarrow{c}$是共線向量,則$\overrightarrow{a}$與$\overrightarrow{c}$的關(guān)系是③(填序號(hào))①共線;②不共線;③以上二者皆可能.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知sinα=$\frac{2\sqrt{5}}{5}$,求tan(α+π)+$\frac{sin(\frac{π}{2}+α)}{cos(\frac{π}{2}-α)}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.若直線l1:y=x,l2:y=x+2與圓C:x2+y2-2mx-2ny=0的四個(gè)交點(diǎn)把圓C分成的四條弧長(zhǎng)相等,則m=( 。
A.0或1B.0或-1C.1或-1D.0

查看答案和解析>>

同步練習(xí)冊(cè)答案