【題目】已知向量,記.
(1)若,求的值;
(2)在銳角中,角的對(duì)邊分別是,且滿足,求的取值范圍.
【答案】(I)
==………………………………3分
∵∴∴=………………6分
(II)∵,
由正弦定理得
∴
∴………………………………8分
∵∴,且
∴∵ ∴……………………………………10分
∴∴
∴∴
【解析】
試題(1)根據(jù)平面向量數(shù)量積的坐標(biāo)表示及三角恒等變換可得 ,由可得,根據(jù)二倍角公式可得的值;(2)根據(jù)正弦定理消去中的邊可得,所以,又,則,得,根據(jù)三角函數(shù)值域的有界性即可求得的取值范圍.
試題解析:(1)向量,,記,
則 ,
因?yàn)?/span>,所以,
所以.
(2)因?yàn)?/span>,由余弦定理得,
所以,
所以,,
所以,又,所以,
則,即,又,
則,得,
所以,又,
所以的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的幾何體中,四邊形為正方形,平面,,,.
(Ⅰ)求證:平面;
(Ⅱ)求與平面所成角的正弦值;
(Ⅲ)在棱上是否存在一點(diǎn),使得平面平面?如果存在,求的值;如果不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在棱柱的面底是菱形,且面ABCD,
為棱的中點(diǎn),M為線段的中點(diǎn).
(1)求證:平面平面;
(2)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論極值點(diǎn)的個(gè)數(shù);
(2)若有兩個(gè)極值點(diǎn),,且,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市一農(nóng)產(chǎn)品近六年的產(chǎn)量統(tǒng)計(jì)如下表:
年份 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代碼 | 1 | 2 | 3 | 4 | 5 | 6 |
年產(chǎn)量(千噸) | 5.1 | 5.3 | 5.6 | 5.5 | 6.0 | 6.1 |
觀察表中數(shù)據(jù)看出,可用線性回歸模型擬合與的關(guān)系.
(1)根據(jù)表中數(shù)據(jù),將以下表格空白部分的數(shù)據(jù)填寫完整,并建立關(guān)于的線性回歸方程;
總和 | 均值 | |||||||
1 | 2 | 3 | 4 | 5 | 6 | |||
5.1 | 5.3 | 5.6 | 5.5 | 6.0 | 6.1 | |||
1 | 4 | 9 | 16 | 25 | 36 | |||
5.1 | 10.6 | 16.8 | 22 | 30 | 36.6 | 121.1 |
(2)若在2025年之前該農(nóng)產(chǎn)品每千克的價(jià)格(單位:元)與年產(chǎn)量滿足的關(guān)系式為,且每年該農(nóng)產(chǎn)品都能全部銷售.預(yù)測(cè)在2013~2025年之間,某市該農(nóng)產(chǎn)品的銷售額在哪一年達(dá)到最大.
附:對(duì)于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為: ,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)討論的單調(diào)性;
(2)當(dāng)時(shí),記的最小值為,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面是一個(gè)直角梯形,其中,,平面,,,點(diǎn)M和點(diǎn)N分別為和的中點(diǎn).
(1)證明:直線平面;
(2)求直線和平面所成角的余弦值;
(3)求二面角的正弦值;
(4)求點(diǎn)P到平面的距離;
(5)設(shè)點(diǎn)N在平面內(nèi)的射影為點(diǎn)H,求線段的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】四棱錐中,平面,,,,,.
(1)求證: 平面平面;
(2)為棱上異于的點(diǎn),且,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(Ⅰ)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(Ⅱ)若點(diǎn)在曲線上,點(diǎn)在曲線上,求的最小值及此時(shí)點(diǎn)的直角坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com