【題目】在直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為.
(Ⅰ)求曲線(xiàn)的普通方程和曲線(xiàn)的直角坐標(biāo)方程;
(Ⅱ)若點(diǎn)在曲線(xiàn)上,點(diǎn)在曲線(xiàn)上,求的最小值及此時(shí)點(diǎn)的直角坐標(biāo).
【答案】(Ⅰ) C1的普通方程,C2的直角坐標(biāo)方程;(Ⅱ) |MN|取得最小值,此時(shí)M(,).
【解析】
(Ⅰ)利用三種方程的轉(zhuǎn)化方法,即可寫(xiě)出C1的普通方程和C2的直角坐標(biāo)方程;
(Ⅱ) 設(shè)M(cosα,sinα),則|MN|的最小值為M到距離最小值,利用三角函數(shù)知識(shí)即可求解.
(Ⅰ)曲線(xiàn)的參數(shù)方程為(為參數(shù)),普通方程為,
曲線(xiàn)的極坐標(biāo)方程為,即,
直角坐標(biāo)方程為,
即;
(Ⅱ)設(shè)M(cosα,sinα),則|MN|的最小值為M到距離,
即,
當(dāng)且僅當(dāng)α=2kπ-(k∈Z)時(shí), |MN|取得最小值,
此時(shí)M(,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某新上市的電子產(chǎn)品舉行為期一個(gè)星期(7天)的促銷(xiāo)活動(dòng),規(guī)定購(gòu)買(mǎi)該電子產(chǎn)品可免費(fèi)贈(zèng)送禮品一份,隨著促銷(xiāo)活動(dòng)的有效開(kāi)展,第五天工作人員對(duì)前五天中參加活動(dòng)的人數(shù)進(jìn)行統(tǒng)計(jì),表示第天參加該活動(dòng)的人數(shù),得到統(tǒng)計(jì)表格如下:
1 | 2 | 3 | 4 | 5 | |
4 | 6 | 10 | 23 | 22 |
(1)若與具有線(xiàn)性相關(guān)關(guān)系,請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線(xiàn)性回歸方程;
(2)預(yù)測(cè)該星期最后一天參加該活動(dòng)的人數(shù)(按四舍五入取到整數(shù)).
參考公式:,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面給出了根據(jù)我國(guó)2012年~2018年水果人均占有量y(單位:kg)和年份代碼x繪制的散點(diǎn)圖(2012年~2018年的年份代碼x分別為1~7).
(1)根據(jù)散點(diǎn)圖相應(yīng)數(shù)據(jù)計(jì)算得,,求y關(guān)于x的線(xiàn)性回歸方程;
(2)估計(jì)我國(guó)2023年水果人均占有量是多少?(精確到1kg).
附:回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:
,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)古代儒家提出的“六藝”指:禮樂(lè)射御書(shū)數(shù).某校國(guó)學(xué)社團(tuán)預(yù)在周六開(kāi)展“六藝”課程講座活動(dòng),周六這天準(zhǔn)備排課六節(jié),每藝一節(jié),排課有如下要求:“樂(lè)”與“書(shū)”不能相鄰,“射”和“御”要相鄰,則針對(duì)“六藝”課程講座活動(dòng)的不同排課順序共有( )
A.18種B.36種C.72種D.144種
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,拋物線(xiàn),為過(guò)焦點(diǎn)的弦,過(guò),分別作拋物線(xiàn)的切線(xiàn),兩切線(xiàn)交于點(diǎn),設(shè),,,則下列結(jié)論正確的是( ).
A.若的斜率為1,則
B.若的斜率為1,則
C.點(diǎn)恒在平行于軸的直線(xiàn)上
D.的值隨著斜率的變化而變化
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),若過(guò)點(diǎn)P(1,t)存在3條直線(xiàn)與曲線(xiàn)相切,求t的取值范圍__________。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在上單調(diào)遞增,求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),若方程有兩個(gè)不等實(shí)數(shù)根,,求實(shí)數(shù)的取值范圍,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:的焦距為2,左頂點(diǎn)與上頂點(diǎn)連線(xiàn)的斜率為.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)點(diǎn)P(m,0)作圓x2+y2=1的一條切線(xiàn)l交橢圓C于M,N兩點(diǎn),當(dāng)|MN|的值最大時(shí),求m的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com