【題目】如圖所示,拋物線,為過焦點(diǎn)的弦,過,分別作拋物線的切線,兩切線交于點(diǎn),設(shè),,則下列結(jié)論正確的是( ).

A.的斜率為1,則

B.的斜率為1,則

C.點(diǎn)恒在平行于軸的直線

D.的值隨著斜率的變化而變化

【答案】BC

【解析】

根據(jù)可求出直線的方程,然后與拋物線聯(lián)立消去,利用根與系數(shù)的關(guān)系求出,再利用拋物線中弦長公式,即求出長,判斷A的正誤;利用導(dǎo)數(shù)分別求出切線的斜率并寫出它們的方程,聯(lián)立兩個方程求出,再設(shè)方程為與拋物線方程聯(lián)立,求出,即可判斷B、C、D的正誤.

,所以焦點(diǎn)坐標(biāo),

A,直線的方程為,由,所以,

所以;

A錯誤.

因?yàn)?/span>,所以,則直線的斜率斜率分別為、,

所以,

解得

由題意知,直線的斜率存在,可設(shè)直線的方程為

消去 ,

所以,,故D錯誤.

,故C正確.

B,當(dāng)的斜率為1時,,故 ,故D正確.

故選:BC

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)當(dāng)時,記的最小值為,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】今年入冬以來,我市天氣反復(fù).在下圖中統(tǒng)計了我市上個月前15天的氣溫,以及相對去年同期的氣溫差(今年氣溫-去年氣溫,單位:攝氏度),以下判斷錯誤的是(

A.今年每天氣溫都比去年氣溫低B.今年的氣溫的平均值比去年低

C.今年8-12號氣溫持續(xù)上升D.今年8號氣溫最低

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面直角坐標(biāo)系,直線過點(diǎn),且傾斜角為,以為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為.

(1)求直線的參數(shù)方程和圓的標(biāo)準(zhǔn)方程;

(2)設(shè)直線與圓交于、兩點(diǎn),若,求直線的傾斜角的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(Ⅰ)求曲線的普通方程和曲線的直角坐標(biāo)方程;

(Ⅱ)若點(diǎn)在曲線,點(diǎn)在曲線,的最小值及此時點(diǎn)的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求上的最值;

(2)若,當(dāng)有兩個極值點(diǎn)時,總有,求此時實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了緩解城市交通壓力,某市市政府在市區(qū)一主要交通干道修建高架橋,兩端的橋墩現(xiàn)已建好,已知這兩橋墩相距m米,余下的工程只需建兩端橋墩之間的橋面和橋墩.經(jīng)測算,一個橋墩的工程費(fèi)用為256萬元;距離為x米的相鄰兩墩之間的橋面工程費(fèi)用為(2)x萬元.假設(shè)橋墩等距離分布,所有橋墩都視為點(diǎn),且不考慮其他因素.記余下工程的費(fèi)用為y萬元.

(1)試寫出工程費(fèi)用y關(guān)于x的函數(shù)關(guān)系式;

(2)當(dāng)m640米時,需新建多少個橋墩才能使工程費(fèi)用y最小?并求出其最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】基于移動網(wǎng)絡(luò)技術(shù)的共享單車被稱為“新四大發(fā)明”之一,短時間內(nèi)就風(fēng)靡全國,給人們帶來新的出行體驗(yàn),某共享單車運(yùn)營公司的市場研究人員為了了解公司的經(jīng)營狀況,對公司最近6個月的市場占有率進(jìn)行了統(tǒng)計,結(jié)果如下表:

月份

2018.11

2018.12

2019.01

2019.02

2019.03

2019.04

月份代碼

1

2

3

4

5

6

11

13

16

15

20

21

(1)請用相關(guān)系數(shù)說明能否用線性回歸模型擬合與月份代碼之間的關(guān)系.如果能,請計算出關(guān)于的線性回歸方程,如果不能,請說明理由;

(2)根據(jù)調(diào)研數(shù)據(jù),公司決定再采購一批單車擴(kuò)大市場,從成本1000元/輛的型車和800元/輛的型車中選購一種,兩款單車使用壽命頻數(shù)如下表:

車型 報廢年限

1年

2年

3年

4年

總計

10

30

40

20

100

15

40

35

10

100

經(jīng)測算,平均每輛單車每年能為公司帶來500元的收入,不考慮除采購成本以外的其它成本,假設(shè)每輛單車的使用壽命都是整數(shù)年,用頻率估計每輛車使用壽命的概率,以平均每輛單車所產(chǎn)生的利潤的估計值為決策依據(jù),如果你是公司負(fù)責(zé)人,會選擇哪款車型?

參考數(shù)據(jù):,,.

參考公式:相關(guān)系數(shù),,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為α為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.直線1的極坐標(biāo)方程為

(Ⅰ)求C的普通方程和l的直角坐標(biāo)方程;

(Ⅱ)設(shè)直線lx軸和y軸的交點(diǎn)分別為AB,點(diǎn)M在曲線C上,求MAB面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案