17.$f(x)=Asin(ωx+φ)(A>0,|φ|<\frac{π}{2})$的圖象如圖所示,為了得到f(x)的圖象,則只要將g(x)=cos2x的圖象( 。
A.向右平移$\frac{π}{12}$個單位長度B.向右平移$\frac{π}{6}$個單位長度
C.向左平移$\frac{π}{12}$個單位長度D.向左平移$\frac{π}{6}$個單位長度

分析 先根據(jù)圖象確定A的值,進而根據(jù)三角函數(shù)結果的點求出求ϕ與ω的值,確定函數(shù)f(x)的解析式,然后根據(jù)誘導公式將函數(shù)化為余弦函數(shù),再平移即可得到結果.

解答 解:函數(shù)數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象,可得A=1,$\frac{1}{4}$T=$\frac{π}{3}$-$\frac{π}{12}$=$\frac{π}{4}$,T=π,則ω=2,
再根據(jù)五點法作圖可得
2×$\frac{π}{12}$+φ=$\frac{π}{2}$,求得φ=$\frac{π}{3}$,
故f(x)=sin(2x+$\frac{π}{3}$).
故將函數(shù)y=f(x)的圖象向左平移$\frac{π}{12}$個單位,可得y=sin[2(x+$\frac{π}{12}$)+$\frac{π}{3}$]=sin(2x+$\frac{π}{2}$)=cos2x的圖象,
故選:C.

點評 本題主要考查利用了y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

7.在△ABC中,角A,B,C所對的邊分別為a,b,c,若△ABC為銳角三角形,且滿足c=2acosB+a,則$\frac{{sin({B-A})}}{sinAsinB}$的取值范圍是( 。
A.$({1,\frac{{\sqrt{3}}}{3}})$B.$({0,\frac{{\sqrt{3}}}{3}})$C.$({0,\frac{{2\sqrt{3}}}{3}})$D.$({1,\frac{{2\sqrt{3}}}{3}})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知直線$l:\sqrt{3}x-y+1=0$,方程x2+y2-2mx-2y+m+3=0表示圓.
(Ⅰ)求實數(shù)m的取值范圍;
(Ⅱ)當m=-2時,試判斷直線l與該圓的位置關系,若相交,求出相應弦長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知拋物線x2=y,點A,B在該拋物線上且位于y軸的兩側,且直線AB與y軸交于點(0,a),若∠AOB為銳角(其中O為坐標原點),則實數(shù)a的取值范圍是(1,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知數(shù)列{an}的通項公式an=nsin$\frac{nπ}{2}$,其前n項和為Sn,則S2016=-1008.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.實數(shù)a,b,c不全為0等價于為( 。
A.a,b,c均不為0B.a,b,c中至多有一個為0
C.a,b,c中至少有一個為0D.a,b,c中至少有一個不為0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.如圖,在平面直角坐標系xoy中,橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為e=$\frac{\sqrt{6}}{3}$,a=$\sqrt{6}$,直線l與x軸交于點E,與橢圓C交于A、B兩點.
(1)求橢圓C的方程;
(2)若點E的坐標為($\frac{\sqrt{3}}{2}$,0),點A在第一象限且橫坐標為$\sqrt{3}$,連結點A與原點O的直線交橢圓C于另一點P,求△PAE的面積;
(3)x軸上存在定點E,使得$\frac{1}{E{A}^{2}}$+$\frac{1}{E{B}^{2}}$恒為定值,請指出定點E的坐標,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.(1)若tanα=2,求$\frac{sin(2π-α)+cos(π+α)}{{cos(α-π)-cos(\frac{3π}{2}-α)}}$的值
(2)化簡:$sin50°(1+\sqrt{3}tan10°)$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.若4個人報名參加3項體育比賽,每個人限報一項,則不同的報名方法的種數(shù)有( 。
A.A${\;}_{4}^{3}$B.C${\;}_{4}^{3}$C.34D.43

查看答案和解析>>

同步練習冊答案