A. | $\frac{x^2}{{{4^{\;}}}}+\frac{y^2}{3}=1$ | B. | $\frac{x^2}{{{4^{\;}}}}+\frac{y^2}{3}=1$(x<0) | ||
C. | $\frac{y^2}{{{4^{\;}}}}+\frac{x^2}{3}=1$ | D. | $\frac{x^2}{{{4^{\;}}}}+\frac{y^2}{3}=1$(x>0) |
分析 通過等差數(shù)列推出,|AB|+|AC|=2|BC|=4 按照橢圓的定義,點(diǎn)A的軌跡就是以B、C為焦點(diǎn),到B、C距離之和為4的橢圓,從而進(jìn)一步可求橢圓的方程.
解答 解:已知AB、BC、CA成等差數(shù)列,則:|AB|+|AC|=2|BC|
∵點(diǎn)B(-1,0),C(1,0),∴|BC|=2
所以,|AB|+|AC|=2|BC|=4
按照橢圓的定義,點(diǎn)A的軌跡就是以B、C為焦點(diǎn),到B、C距離之和為4的橢圓
由已知有:c=1,a=2
所以,b2=a2-c2=4-1=3
又已知|AB|>|AC|
所以點(diǎn)A位于上述橢圓的右半部分,且點(diǎn)A不能與B、C在同一直線(x軸)上(否則就不能構(gòu)成三角形)
所以,點(diǎn)A的軌跡方程是:$\frac{x^2}{{{4^{\;}}}}+\frac{y^2}{3}=1$(x>0),
故選D.
點(diǎn)評 本題是中檔題,考查橢圓的定義,等差數(shù)列的應(yīng)用,正確運(yùn)用橢圓的定義是解題的關(guān)鍵,同時應(yīng)注意變量的范圍.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $x=-\frac{π}{6}$ | B. | $x=\frac{5π}{12}$ | C. | $x=\frac{π}{3}$ | D. | $x=-\frac{π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\sqrt{2}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 等于$\frac{{\sqrt{3}}}{2}$ | B. | 等于$-\frac{{\sqrt{3}}}{2}$ | C. | 等于$±\frac{{\sqrt{3}}}{2}$ | D. | 不存在 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 16 | B. | 15 | C. | 8 | D. | 7 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com