5.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x+y-1≤0\\ x-y+1≥0\\ y≥-1\end{array}\right.$,則$\frac{y}{x-3}$的最小值為$-\frac{1}{3}$.

分析 作出不等式組對應(yīng)的平面區(qū)域,利用直線斜率的定義,利用數(shù)形結(jié)合進(jìn)行求解.

解答 解:作出不等式組對應(yīng)的平面區(qū)域如圖,
$\frac{y}{x-3}$的幾何意義是區(qū)域內(nèi)的點(diǎn)與點(diǎn)E(3,0)的斜率,
由圖象知AE的斜率最小,由$\left\{\begin{array}{l}{x+y-1=0}\\{x-y+1=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=0}\\{y=1}\end{array}\right.$,
即A(0,1),
此時(shí)$\frac{y}{x-3}$的最小值為$\frac{1}{0-3}$=$-\frac{1}{3}$,
故答案為:$-\frac{1}{3}$.

點(diǎn)評 本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合以及直線斜率公式是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知數(shù)列{an}滿足a1=1,an+1-an=n+1(n∈N*),則數(shù)列{${\frac{1}{a_n}}$}的前2015項(xiàng)的和為$\frac{2015}{1008}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)函數(shù)f(x)=ln(x+1)+a(x2-x),其中a∈R.
(Ⅰ)當(dāng)a=1時(shí),求函數(shù)f(x)的極值;
(Ⅱ)當(dāng)a≥0時(shí),若滿足?x>0,f(x)≥0成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)=alnx-bx2,a,b∈R.若不等式f(x)≥x對所有的b∈(-∞,0],x∈(e,e2]都成立,則a的取值范圍是( 。
A.[e,+∞)B.$[\frac{e^2}{2},+∞)$C.$[\frac{e^2}{2},{e^2})$D.[e2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=ex+ax2-2ax-1.
(Ⅰ)當(dāng)a=$\frac{1}{2}$時(shí),討論f(x)的單調(diào)性;
(Ⅱ)設(shè)函數(shù)g(x)=f′(x),討論g(x)的零點(diǎn)個(gè)數(shù);若存在零點(diǎn),請求出所有的零點(diǎn)或給出每個(gè)零點(diǎn)所在的有窮區(qū)間,并說明理由(注:有窮區(qū)間指區(qū)間的端點(diǎn)不含有-∞和+∞的區(qū)間).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,四棱錐P-ABCD中,底面ABCD為平行四邊形,PA⊥底面ABCD,M是棱PD的中點(diǎn),且PA=AB=AC=2,BC=2$\sqrt{2}$.
(Ⅰ)求證:CD⊥平面PAC;
(Ⅱ)N是棱AB中點(diǎn),求直線CN與平面MAB所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.過拋物線y2=2px的焦點(diǎn),傾斜角為$\frac{π}{3}$的直線l交此拋物線于A、B兩點(diǎn).
(1)求直線l的參數(shù)方程;
(2)求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知正實(shí)數(shù)m,n滿足m+n=1,當(dāng)$\frac{1}{m}$+$\frac{16}{n}$取得最小值時(shí),曲線y=xα過點(diǎn)P($\frac{m}{5}$,$\frac{n}{4}$),則α的值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.命題“兩條對角線不垂直的四邊形不是菱形”的逆否命題是( 。
A.若四邊形不是菱形,則它的兩條對角線不垂直
B.若四邊形的兩條對角線垂直,則它是菱形
C.若四邊形的兩條對角線垂直,則它不是菱形
D.若四邊形是菱形,則它的兩條對角線垂直

查看答案和解析>>

同步練習(xí)冊答案