設(shè)
1
2
<(
1
2
b<(
1
2
a<1,比較aa與ab與ba的大小.
考點(diǎn):指數(shù)函數(shù)的圖像與性質(zhì)
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:先利用指數(shù)函數(shù)的單調(diào)性性確定a,b的范圍,然后再利用a,b的范圍結(jié)合指數(shù)函數(shù)的單調(diào)性確定aa與ab與ba的大。
解答: 解:因?yàn)?span id="vz5rdbz" class="MathJye">
1
2
<(
1
2
b<(
1
2
a<1,
所以(
1
2
)1
<(
1
2
)b<(
1
2
)a<(
1
2
)0
,而指數(shù)函數(shù)y=(
1
2
)x
是減函數(shù),
故0<a<b<1,
由指數(shù)函數(shù)性質(zhì)得aa>ab,結(jié)合冪函數(shù)的性質(zhì)地ba>aa,
所以ba>aa>ab
點(diǎn)評(píng):此題主要考查了利用指數(shù)函數(shù)和冪函數(shù)的單調(diào)性比較大小的方法,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=
x-1
-
1
x
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在四面體V-ABC中,E、F分別為平面VAB、VAC的重心,求證:EF∥底面ABC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線(xiàn)C:
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦點(diǎn)為F,若過(guò)點(diǎn)F且傾斜角為45°的直線(xiàn)與雙曲線(xiàn)的右支有且只有一個(gè)交點(diǎn),則此雙曲線(xiàn)的離心率的取值范圍是( 。
A、[
2
,+∞)
B、(
2
,+∞)
C、(2,+∞)
D、(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
-
1
2
x+
1
4
,x∈[0,
1
2
]
2x2
x+2
,x∈(
1
2
,1]
g(x)=asin(
π
3
x+
2
)-2a+2(a>0),給出下列結(jié)論:
結(jié)論:
①函數(shù)f(x)的值域?yàn)閇0,
2
3
];
②函數(shù)g(x)在[0,1]上是增函數(shù);
③對(duì)任意a>0,方程f(x)=g(x)在[0,1]內(nèi)恒有解;
④若存在x1,x2∈[0,1],使得f(x1)=g(x2)成立,則實(shí)數(shù)a的取值范圍是[
4
9
4
5
].
其中所有正確結(jié)論的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

根據(jù)正弦函數(shù)、余弦函數(shù)的圖象,寫(xiě)出下列關(guān)于x的不等式的解集:
(1)cosx>
1
2
;
(2)cosx<
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的內(nèi)角A、B、C所對(duì)應(yīng)邊分別為a、b、c,若3a2+2ab+3b2-3c2=0,則sinC=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=x+
4
x
,當(dāng)x∈[1,4]時(shí),函數(shù)的最小值和最大值分別為( 。
A、-5,-4B、-4,5
C、4,5D、-5,4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

f(x)是在R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=2x+x-1,則當(dāng)x<0時(shí)f(x)=(  )
A、-(
1
2
)x
+x+1
B、(
1
2
)x
-x-1
C、2x-x-1
D、2x+x-1

查看答案和解析>>

同步練習(xí)冊(cè)答案