【題目】在新中國成立70周年國慶閱兵慶典中,眾多群眾在臉上貼著一顆紅心,以此表達(dá)對祖國的熱愛之情,在數(shù)學(xué)中,有多種方程都可以表示心型曲線,其中有著名的笛卡爾心型曲線,如圖,在直角坐標(biāo)系中,以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.圖中的曲線就是笛卡爾心型曲線,其極坐標(biāo)方程為(),M為該曲線上的任意一點(diǎn).
(1)當(dāng)時,求M點(diǎn)的極坐標(biāo);
(2)將射線OM繞原點(diǎn)O逆時針旋轉(zhuǎn)與該曲線相交于點(diǎn)N,求的最大值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了檢驗學(xué)習(xí)情況,某培訓(xùn)機(jī)構(gòu)于近期舉辦一場競賽活動,分別從甲、乙兩班各抽取10名學(xué)員的成績進(jìn)行統(tǒng)計分析,其成績的莖葉圖如圖所示(單位:分),假設(shè)成績不低于90分者命名為“優(yōu)秀學(xué)員”.
(1)分別求甲、乙兩班學(xué)員成績的平均分(結(jié)果保留一位小數(shù));
(2)從甲班4名優(yōu)秀學(xué)員中抽取兩人,從乙班2名80分以下的學(xué)員中抽取一人,求三人平均分不低于90分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我們在求高次方程或超越方程的近似解時常用二分法求解,在實(shí)際生活中還有三分法.比如借助天平鑒別假幣.有三枚形狀大小完全相同的硬幣,其中有一假幣(質(zhì)量較輕),把兩枚硬幣放在天平的兩端,若天平平衡,則剩余一枚為假幣,若天平不平衡,較輕的一端放的硬幣為假幣.現(xiàn)有 27 枚這樣的硬幣,其中有一枚是假幣(質(zhì)量較輕),如果只有一臺天平,則一定能找到這枚假幣所需要使用天平的最少次數(shù)為( )
A.2B.3C.4D.5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為;直線的參數(shù)方程為(為參數(shù)),直線與曲線分別交于,兩點(diǎn).
(1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;
(2)若點(diǎn)的極坐標(biāo)為,,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在新中國成立70周年國慶閱兵慶典中,眾多群眾在臉上貼著一顆紅心,以此表達(dá)對祖國的熱愛之情,在數(shù)學(xué)中,有多種方程都可以表示心型曲線,其中有著名的笛卡爾心型曲線,如圖,在直角坐標(biāo)系中,以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.圖中的曲線就是笛卡爾心型曲線,其極坐標(biāo)方程為(),M為該曲線上的任意一點(diǎn).
(1)當(dāng)時,求M點(diǎn)的極坐標(biāo);
(2)將射線OM繞原點(diǎn)O逆時針旋轉(zhuǎn)與該曲線相交于點(diǎn)N,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對某種產(chǎn)品市場產(chǎn)銷量情況如圖所示,其中:表示產(chǎn)品各年年產(chǎn)量的變化規(guī)律;表示產(chǎn)品各年的銷售情況.下列敘述:(1)產(chǎn)品產(chǎn)量、銷售量均以直線上升,仍可按原生產(chǎn)計劃進(jìn)行下去;(2)產(chǎn)品已經(jīng)出現(xiàn)了供大于求的情況,價格將趨跌;(3)產(chǎn)品的庫存積壓將越來越嚴(yán)重,應(yīng)壓縮產(chǎn)量或擴(kuò)大銷售量;(4)產(chǎn)品的產(chǎn)、銷情況均以一定的年增長率遞增.你認(rèn)為較合理的是( )
A.(1),(2),(3)B.(1),(3),(4)
C.(2),(4)D.(2),(3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】祖暅?zhǔn)悄媳背瘯r代的偉大科學(xué)家,公元五世紀(jì)末提出體積計算原理,即祖暅原理:“冪勢既同,則積不容異”.意思是:夾在兩個平行平面之間的兩個幾何體,被平行于這兩個平面的任何一個平面所截,如果截面面積恒相等,那么這兩個幾何體的體積一定相等.設(shè)A,B為兩個同高的幾何體,A,B的體積不相等,A,B在等高處的截面積不恒相等.根據(jù)祖暅原理可知,p是q的( 。
A. 充分不必要條件 B. 必要不充分條件
C. 充要條件 D. 既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知.
(1)求的單調(diào)區(qū)間;
(2)當(dāng)時,求證:對于,恒成立;
(3)若存在,使得當(dāng)時,恒有成立,試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=-ln(x+m).
(1)設(shè)x=0是f(x)的極值點(diǎn),求m,并討論f(x)的單調(diào)性;
(2)當(dāng)m≤2時,證明f(x)>0.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com