【題目】設(shè)是實(shí)數(shù),,
(1)若函數(shù)為奇函數(shù),求的值;
(2)試用定義證明:對(duì)于任意,在上為單調(diào)遞增函數(shù);
(3)若函數(shù)為奇函數(shù),且不等式對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.
【答案】(1)(2)證明見解析(3)
【解析】
(1)由奇函數(shù)的定義,可得,化簡(jiǎn)整理,解方程可得的值;(2)運(yùn)用單調(diào)性的定義證明,分取值、作差、變形和定符號(hào)、下結(jié)論等;(3)由于為奇函數(shù)且在上為增函數(shù),由題意可得,等價(jià)于對(duì)任意恒成立,將二次函數(shù)的對(duì)稱軸與0進(jìn)行比較,結(jié)合二次函數(shù)的最值即可得到所求的范圍.
(1)∵,且
∴,∴.
(2)證明:設(shè),則
∵∴
∴即,所以在上為增函數(shù).
(3)因?yàn)?/span>為奇函數(shù)且在上為增函數(shù),
由得:
∴即對(duì)任意恒成立.
令問題等價(jià)于對(duì)任意恒成立.
令,其對(duì)稱軸
當(dāng)即時(shí),,符合題意.
當(dāng)時(shí),即時(shí),對(duì)任意,恒成立,等價(jià)于
解得:
綜上所述,當(dāng)時(shí),不等式對(duì)任意恒成立
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)的圖象為,則以下結(jié)論中正確的是__________.(寫出所有正確結(jié)論的編號(hào))
①圖象關(guān)于直線對(duì)稱;
②圖象關(guān)于點(diǎn)對(duì)稱;
③函數(shù)在區(qū)間內(nèi)是增函數(shù);
④由的圖象向右平移個(gè)單位長(zhǎng)度可以得到圖象.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】 如圖是正方體的平面展開圖.在這個(gè)正方體中,
①BM∥平面DE;②CN∥平面AF;③平面BDM∥平面AFN;④平面BDE∥平面NCF.
以上四個(gè)命題中,正確命題的序號(hào)是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司在甲、乙兩地銷售某種品牌車,利潤(rùn)(單位:萬元)分別為和,其中為銷售量(單位:輛)
(1)當(dāng)銷售量在什么范圍時(shí),甲地的銷售利潤(rùn)不低于乙地的銷售利潤(rùn);
(2)若該公司在這兩地共銷售輛車,則甲、乙兩地各銷售多少量時(shí)?該公司能獲得利潤(rùn)最大,最大利潤(rùn)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù)f(x)=4sin(2x+)(x∈R),有下列命題:
①y=f(x)的表達(dá)式可改寫為y=4cos(2x﹣);
②y=f(x)是以2π為最小正周期的周期函數(shù);
③y=f(x)的圖象關(guān)于點(diǎn)對(duì)稱;
④y=f(x)的圖象關(guān)于直線x=﹣對(duì)稱.
其中正確的命題的序號(hào)是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱錐P—ABCD中,底面ABCD是矩形,側(cè)棱PA垂直于底面,E、F分別是AB、PC的中點(diǎn),PA=AD.
求證:(1)CD⊥PD;(2)EF⊥平面PCD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列關(guān)于相關(guān)系數(shù)的說法不正確的是( )
A. 相關(guān)系數(shù)越大兩個(gè)變量間相關(guān)性越強(qiáng);
B. 相關(guān)系數(shù)的取值范圍為;
C. 相關(guān)系數(shù)時(shí)兩個(gè)變量正相關(guān),時(shí)兩個(gè)變量負(fù)相關(guān);
D. 相關(guān)系數(shù)時(shí),樣本點(diǎn)在同一直線上。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解人們對(duì)“2019年3月在北京召開的第十三屆全國(guó)人民代表大會(huì)第二次會(huì)議和政協(xié)第十三屆全國(guó)委員會(huì)第二次會(huì)議”的關(guān)注度,某部門從年齡在15歲到65歲的人群中隨機(jī)調(diào)查了100人,并得到如圖所示的年齡頻率分布直方圖,在這100人中關(guān)注度非常髙的人數(shù)與年齡的統(tǒng)計(jì)結(jié)果如右表所示:
年齡 | 關(guān)注度非常高的人數(shù) |
15 | |
5 | |
15 | |
23 | |
17 |
(Ⅰ)由頻率分布直方圖,估計(jì)這100人年齡的中位數(shù)和平均數(shù);
(Ⅱ)根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)填寫下面的列聯(lián)表,據(jù)此表,能否在犯錯(cuò)誤的概率不超過的前提下,認(rèn)為以45歲為分界點(diǎn)的不同人群對(duì)“兩會(huì)”的關(guān)注度存在差異?
(Ⅲ)按照分層抽樣的方法從年齡在35歲以下的人中任選六人,再從六人中隨機(jī)選兩人,求兩人中恰有一人年齡在25歲以下的概率是多少.
45歲以下 | 45歲以上 | 總計(jì) | |
非常髙 | |||
一般 | |||
總計(jì) |
參考數(shù)據(jù):
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com