【題目】已知正項(xiàng)數(shù)列的前n項(xiàng)和為,數(shù)列滿足.

1)求數(shù)列的通項(xiàng)公式;

2)數(shù)列滿足,它的前n項(xiàng)和為,若存在正整數(shù)n,使不等式成立,求實(shí)數(shù)的取值范圍.

【答案】1,;(2

【解析】

1)由題意可得當(dāng)時(shí),,從而推出,則,從而可求出;

2)易知,利用錯(cuò)位相減法求得,從而有不等式成立,對(duì)分奇偶數(shù)討論,令,利用換元法化為二次函數(shù),從而可求出答案.

解:(1,

當(dāng)時(shí),,(舍去)

當(dāng)時(shí),由,得,

兩式相減得:,

,∴

又∵數(shù)列為正項(xiàng)數(shù)列,故,也即,

∴數(shù)列為以1為首項(xiàng)1為公差的等差數(shù)列,

,;

2)易知,則

①,

②,

②可得:,

,所以不等式成立,

n為偶數(shù),則,所以,

設(shè),則單調(diào)遞減,

故當(dāng)時(shí),,所以;

n為奇數(shù),則,所以

設(shè),則單調(diào)遞增,

故當(dāng)時(shí),,所以,

綜上所述,的取值范圍.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某藝術(shù)團(tuán)組織的“微視頻展示”活動(dòng)中,該團(tuán)體將從微視頻的“點(diǎn)贊量”和“專家評(píng)分”兩個(gè)角度來進(jìn)行評(píng)優(yōu).若A視頻的“點(diǎn)贊量”和“專家評(píng)分”中至少有一項(xiàng)高于B視頻,則稱A視頻不亞于B視頻.已知共有5部微視頻展,如果某微視頻不亞于其他4部視頻,就稱此視頻為優(yōu)秀視頻.那么在這5部微視頻中,最多可能有_______個(gè)優(yōu)秀視頻.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為,以原點(diǎn)0為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)若曲線方程中的參數(shù)是,且有且只有一個(gè)公共點(diǎn),求的普通方程;

(2)已知點(diǎn),若曲線方程中的參數(shù)是,,且相交于,兩個(gè)不同點(diǎn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的傾斜角為,且經(jīng)過點(diǎn).以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線,從原點(diǎn)O作射線交于點(diǎn)M,點(diǎn)N為射線OM上的點(diǎn),滿足,記點(diǎn)N的軌跡為曲線C.

(Ⅰ)求出直線的參數(shù)方程和曲線C的直角坐標(biāo)方程;

(Ⅱ)設(shè)直線與曲線C交于P,Q兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時(shí),求的單調(diào)區(qū)間;

(2)若對(duì)任意,都有成立,求實(shí)數(shù)的取值范圍;

(3)若過點(diǎn)可作函數(shù)圖像的三條不同切線,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C經(jīng)過點(diǎn)A(2,-1),和直線xy1相切,且圓心在直線y=-2x.

(1)求圓C的方程;

(2)已知直線l經(jīng)過(2,0)點(diǎn),并且被圓C截得的弦長(zhǎng)為2,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖像相交于點(diǎn),兩點(diǎn),若動(dòng)點(diǎn)滿足,則點(diǎn)的軌跡方程是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體中,點(diǎn)是棱上的一個(gè)動(dòng)點(diǎn),平面交棱于點(diǎn).下列命題正確的為_______________.

①存在點(diǎn),使得//平面;

②對(duì)于任意的點(diǎn),平面平面

③存在點(diǎn),使得平面;

④對(duì)于任意的點(diǎn),四棱錐的體積均不變.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知z是實(shí)系數(shù)方程的虛根,記它在直角坐標(biāo)平面上的對(duì)應(yīng)點(diǎn)為,

1)若在直線上,求證:在圓上;

2)給定圓m、,),則存在唯一的線段s滿足:①若在圓C上,則在線段s上;②若是線段s上一點(diǎn)(非端點(diǎn)),則在圓C上、寫出線段s的表達(dá)式,并說明理由;

3)由(2)知線段s與圓C之間確定了一種對(duì)應(yīng)關(guān)系,通過這種對(duì)應(yīng)關(guān)系的研究,填寫表(表中是(1)中圓的對(duì)應(yīng)線段).

線段s與線段的關(guān)系

m、r的取值或表達(dá)式

s所在直線平行于所在直線

s所在直線平分線段

查看答案和解析>>

同步練習(xí)冊(cè)答案