已知函數(shù)f(x)=ax-2,g(x)=loga|x|(a>0,且a≠1),且f(2011)•g(-2012)<0,則y=f(x),y=g(x)在同一坐標(biāo)系下的大致圖象是( 。
分析:由條件知f(2011)>0,從而得到g(-2012)<0,然后利用對(duì)數(shù)的性質(zhì)確定a的取值范圍,件即可判斷函數(shù)的圖象.
解答:解:∵f(x)=ax-2,
∴f(2011)=a2011-2>0,
又f(2011)•g(-2012)<0,
∴g(-2012)<0,
即g(-2012)=loga|-2012|=loga2012<0,
∴0<a<1.
∴f(x)=ax-2,為單調(diào)遞減函數(shù),排除A,B.
當(dāng)x>0時(shí),g(x)=loga|x|=logax,為單調(diào)遞減函數(shù),
∴排除D,
故選:B.
點(diǎn)評(píng):本題主要考查函數(shù)圖象的識(shí)別和判斷,利用指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的性質(zhì)是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當(dāng)a∈[-2,
1
4
)
時(shí),求f(x)的最大值;
(2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點(diǎn)的連線的斜率,否存在實(shí)數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過(guò)原點(diǎn),則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a|x|的圖象經(jīng)過(guò)點(diǎn)(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿(mǎn)足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
(2)若a=-3b,求f(x+1)>f(x)時(shí)的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時(shí),若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號(hào)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案