【題目】已知的一個(gè)頂點(diǎn)為拋物線(xiàn)的頂點(diǎn) , 兩點(diǎn)都在拋物線(xiàn)上,且.

(1)求證:直線(xiàn)必過(guò)一定點(diǎn);

(2)求證: 面積的最小值.

【答案】(1)詳見(jiàn)解析(2)當(dāng)時(shí), 的面積取得最小值為

【解析】試題分析:(1)由于,所以設(shè)所在的直線(xiàn)的方程為),則直線(xiàn)的方程為.分別與拋物線(xiàn)方程組方程組解得A,B點(diǎn)坐標(biāo)。由AB直線(xiàn)方程可寫(xiě)出定點(diǎn),要注意直線(xiàn)AB斜率不存在時(shí)情況。(2)由(1)知直線(xiàn)AB過(guò)定點(diǎn)(2,0),所以可設(shè)直線(xiàn)的方程為.與拋物線(xiàn)組方程組。由韋達(dá)定理與面積公式,可求得面積最小值。

試題解析:(1)設(shè)所在的直線(xiàn)的方程為),則直線(xiàn)的方程為.

,解得,即點(diǎn)的坐標(biāo)為

同理可求得點(diǎn)的坐標(biāo)為

∴當(dāng),即時(shí),直線(xiàn)的方程為

化簡(jiǎn)并整理,得

當(dāng)時(shí),恒有

當(dāng),即時(shí),直線(xiàn)的方程為,過(guò)點(diǎn).

故直線(xiàn)過(guò)定點(diǎn).

(2)由于直線(xiàn)過(guò)定點(diǎn),記為點(diǎn),所以可設(shè)直線(xiàn)的方程為.

,消去并整理得,

,

于是

∴當(dāng)時(shí), 的面積取得最小值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ln(2ax+1)+ ﹣2ax(a∈R).
(1)若x=2為f(x)的極值點(diǎn),求實(shí)數(shù)a的值;
(2)若y=f(x)在[3,+∞)上為增函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線(xiàn)的頂點(diǎn)與焦點(diǎn)分別是橢圓的焦點(diǎn)與頂點(diǎn),若雙曲線(xiàn)的兩條漸近線(xiàn)與橢圓的交點(diǎn)構(gòu)成的四邊形恰為正方形,則橢圓的離心率為( 。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)表示三條不同的直線(xiàn),表示三個(gè)不同的平面,給出下列四個(gè)命題:

①若,則;

②若,則;

③若為異面直線(xiàn),,,則

④若,則. 其中真命題的個(gè)數(shù)為( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)是橢圓的短軸位于軸下方的端點(diǎn),過(guò)作斜率為1的直線(xiàn)交橢圓于點(diǎn),點(diǎn)軸上,且軸,

1)若點(diǎn)的坐標(biāo)為,求橢圓的方程;

2)若點(diǎn)的坐標(biāo)為,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某同學(xué)在用120分鐘做150分的數(shù)學(xué)試卷(分為卷Ⅰ和卷Ⅱ兩部分)時(shí),卷Ⅰ和卷Ⅱ所得分?jǐn)?shù)分別為P(單位:分)Q(單位:分),在每部分做了20分鐘的條件下發(fā)現(xiàn)它們與投入時(shí)間m(單位:分鐘)的關(guān)系有經(jīng)驗(yàn)公式,.

(1)試建立數(shù)學(xué)總成績(jī)y(單位:分)與對(duì)卷Ⅱ投入時(shí)間x(單位:分鐘)的函數(shù)關(guān)系式,并指明函數(shù)定義域;

(2)如何計(jì)劃使用時(shí)間,才能使得所得分?jǐn)?shù)最高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)等差數(shù)列{an}的公差d>0,前n項(xiàng)和為Sn , 已知3 是﹣a2與a9的等比中項(xiàng),S10=﹣20.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn= ,求數(shù)列{bn}的前n項(xiàng)和Tn(n≥6).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從某學(xué)校高三年級(jí)共800名男生中隨機(jī)抽取50名測(cè)量身高,測(cè)量發(fā)現(xiàn)被測(cè)學(xué)生身高全部介于155cm和195cm之間,將測(cè)量結(jié)果按如下方式分成八組:第一組[155,160);第二組[160,165)、…、第八組[190,195],下圖是按上述分組方法得到的頻率分布直方圖的一部分,已知第一組與第八組人數(shù)相同,第六組、第七組、第八組人數(shù)依次構(gòu)成等差數(shù)列.

(1)估計(jì)這所學(xué)校高三年級(jí)全體男生身高180cm以上(含180cm)的人數(shù);


2)求第六組、第七組的頻率并補(bǔ)充完整頻率分布直方圖(如需增加刻度請(qǐng)?jiān)诳v軸上標(biāo)記出數(shù)據(jù),并用直尺作圖);

(3)由直方圖估計(jì)男生身高的中位數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于n∈N* , 若數(shù)列{xn}滿(mǎn)足xn+1﹣xn>1,則稱(chēng)這個(gè)數(shù)列為“K數(shù)列”.
(Ⅰ)已知數(shù)列:1,m+1,m2是“K數(shù)列”,求實(shí)數(shù)m的取值范圍;
(Ⅱ)是否存在首項(xiàng)為﹣1的等差數(shù)列{an}為“K數(shù)列”,且其前n項(xiàng)和Sn滿(mǎn)足 ?若存在,求出{an}的通項(xiàng)公式;若不存在,請(qǐng)說(shuō)明理由;
(Ⅲ)已知各項(xiàng)均為正整數(shù)的等比數(shù)列{an}是“K數(shù)列”,數(shù)列 不是“K數(shù)列”,若 ,試判斷數(shù)列{bn}是否為“K數(shù)列”,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案