【題目】對于n∈N* , 若數(shù)列{xn}滿足xn+1﹣xn>1,則稱這個數(shù)列為“K數(shù)列”.
(Ⅰ)已知數(shù)列:1,m+1,m2是“K數(shù)列”,求實數(shù)m的取值范圍;
(Ⅱ)是否存在首項為﹣1的等差數(shù)列{an}為“K數(shù)列”,且其前n項和Sn滿足 ?若存在,求出{an}的通項公式;若不存在,請說明理由;
(Ⅲ)已知各項均為正整數(shù)的等比數(shù)列{an}是“K數(shù)列”,數(shù)列 不是“K數(shù)列”,若 ,試判斷數(shù)列{bn}是否為“K數(shù)列”,并說明理由.

【答案】解:(Ⅰ)由題意得(m+1)﹣1>1,①m2﹣(m+1)>1,②
解①得 m>1;
解②得 m<﹣1或m>2.
所以m>2,故實數(shù)m的取值范圍是m>2.
(Ⅱ)假設(shè)存在等差數(shù)列{an}符合要求,設(shè)公差為d,則d>1,
由 a1=﹣1,得 ,.
由題意,得 對n∈N*均成立,
即(n﹣1)d<n.
①當(dāng)n=1時,d∈R;
②當(dāng)n>1時,
因為 ,
所以d≤1,與d>1矛盾,
故這樣的等差數(shù)列{an}不存在.
(Ⅲ)設(shè)數(shù)列{an}的公比為q,則 ,
因為{an}的每一項均為正整數(shù),且an+1﹣an=anq﹣an=an(q﹣1)>1>0,
所以a1>0,且q>1.
因為an+1﹣an=q(an﹣an1)>an﹣an1 ,
所以在{an﹣an1}中,“a2﹣a1”為最小項.
同理,在 中,“ ”為最小項.
由{an}為“K數(shù)列”,只需a2﹣a1>1,即 a1(q﹣1)>1,
又因為 不是“K數(shù)列”,且“ ”為最小項,所以 ,即 a1(q﹣1)≤2,
由數(shù)列{an}的每一項均為正整數(shù),可得 a1(q﹣1)=2,
所以a1=1,q=3或a1=2,q=2.
①當(dāng)a1=1,q=3時, ,則 ,
,則
= ,
所以{cn}為遞增數(shù)列,即 cn>cn1>cn2>…>c1 ,
所以bn+1﹣bn>bn﹣bn1>bn1﹣bn2>…>b2﹣b1
因為 ,
所以對任意的n∈N* , 都有bn+1﹣bn>1,
即數(shù)列{cn}為“K數(shù)列”.
②當(dāng)a1=2,q=2時, ,則 .因為 ,
所以數(shù)列{bn}不是“K數(shù)列”.
綜上:當(dāng) 時,數(shù)列{bn}為“K數(shù)列”,
當(dāng) 時,數(shù)列{bn}不是“K數(shù)列”
【解析】(Ⅰ)由題意得(m+1)﹣1>1,m2﹣(m+1)>1,聯(lián)立解出即可得出.(Ⅱ)假設(shè)存在等差數(shù)列{an}符合要求,設(shè)公差為d,則d>1,由題意,得 對n∈N*均成立,化為(n﹣1)d<n.對n分類討論解出即可得出.(Ⅲ)設(shè)數(shù)列{an}的公比為q,則 ,由題意可得:{an}的每一項均為正整數(shù),且an+1﹣an=anq﹣an=an(q﹣1)>1>0,可得a1>0,且q>1.由an+1﹣an=q(an﹣an1)>an﹣an1 , 可得在{an﹣an1}中,“a2﹣a1”為最小項.同理,在 中,“ ”為最小項.再利用“K數(shù)列”,可得a1=1,q=3或a1=2,q=2.進而得出.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的一個頂點為拋物線的頂點, , 兩點都在拋物線上,且.

(1)求證:直線必過一定點;

(2)求證: 面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù),若,則稱的“不動點”;若,則稱的“穩(wěn)定點”.函數(shù)的“不動點”和“穩(wěn)定點”的集合分別記為,即,

)設(shè)函數(shù),求集合

)求證:

)設(shè)函數(shù),且,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,平面五邊形ABCDE中,AB∥CD,∠BAD=90°,AB=2,CD=1,△ADE是邊長為2的正三角形.現(xiàn)將△ADE沿AD折起,得到四棱錐E﹣ABCD(如圖2),且DE⊥AB.
(Ⅰ)求證:平面ADE⊥平面ABCD;
(Ⅱ)求平面BCE和平面ADE所成銳二面角的大;
(Ⅲ)在棱AE上是否存在點F,使得DF∥平面BCE?若存在,求 的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時,求的值域;

(2)當(dāng)時,函數(shù)的圖象關(guān)于對稱,求函數(shù)的對稱軸.

(3)若圖象上有一個最低點,如果圖象上每點縱坐標不變,橫坐標縮短到原來的倍,然后向左平移1個單位可得的圖象,又知的所有正根從小到大依次為,且,求的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= eax(a>0).
(1)當(dāng)a=2時,求曲線y=f(x)在x= 處的切線方程;
(2)討論方程f(x)﹣1=0根的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱中,,,,分別為棱的中點.

(1)求證:∥平面

(2)若異面直線 所成角為,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解春季晝夜溫差大小與某種子發(fā)芽多少之間的關(guān)系,現(xiàn)在從4月份的30天中隨機挑選了5天進行研究,且分別記錄了每天晝夜溫差與每天每100顆種子浸泡后的發(fā)芽數(shù),得到如下表格:

日期

4月1日

4月7日

4月15日

4月21日

4月30日

溫差x/℃

10

11

13

12

8

發(fā)芽數(shù)y/顆

23

25

30

26

16

(1)從這5天中任選2天,記發(fā)芽的種子數(shù)分別為,求事件“均不小于25”的概率;

(2) 若由線性回歸方程得到的估計數(shù)據(jù)與4月份所選5天的檢驗數(shù)據(jù)的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的. 請根據(jù)4月7,4月15日與4月21日這三天的數(shù)據(jù),求出關(guān)于的線性回歸方程,并判定所得的線性回歸方程是否可靠?

參考公式: ,

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知各項均為正數(shù)的數(shù)列的首項 是數(shù)列的前項和,且滿足:

.

(1)若成等比數(shù)列,求實數(shù)的值;

(2)若,求證:數(shù)列為等差數(shù)列;

(3)在(2)的條件下,求.

查看答案和解析>>

同步練習(xí)冊答案