分析 (1)根據(jù)函數(shù)奇偶性的定義進行證明即可.
(2)構造函數(shù),根據(jù)函數(shù)奇偶性和最值之間的關系建立方程進行求解即可.
解答 解:(1)∵f(-x)+f(x)=0,∴f(-x)=-f(x),
∵g(x)=1的解集為{0},∴g(0)=0,
當x≠0時,g(x)≠1,
則F(x)=$\frac{2f(x)}{g(x)-1}$+f(x)=f(x)($\frac{2}{g(x)-1}+1$)=f(x)•$\frac{2+g(x)-1}{g(x)-1}$=f(x)•$\frac{g(x)+1}{g(x)-1}$,
由g(x)≠1,得x≠0,即函數(shù)的定義域為(-∞,0)∪(0,+∞),
則F(-x)=f(-x)•$\frac{g(-x)+1}{g(-x)-1}$=-f(x)•$\frac{g(-x)+g(x)g(-x)}{g(-x)-g(x)g(-x)}$=-f(x)•$\frac{1+g(x)}{1-g(x)}$=f(x)•$\frac{g(x)+1}{g(x)-1}$=F(x),
則函數(shù)F(x)=$\frac{2f(x)}{g(x)-1}$+f(x)為偶函數(shù).
(2)設h(x)=xF(x)+3,則h(x)-3=xF(x)為減函數(shù),
則 當h(x)=xF(x)+3在[-3,0)∪(0,3]取得最大值和最小值時,h(x)-3=xF(x)也取得最大值和最小值,
則[xF(x)]max+[xF(x)]min=0,
即M-3+N-3=0,即M+N=6
點評 本題主要考查函數(shù)奇偶性的判斷以及函數(shù)最值的應用,利用函數(shù)奇偶性的定義結合函數(shù)最值和奇偶性的關系是解決本題的關鍵.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | t>5 | B. | t<5 | C. | t≥5 | D. | t≤5 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{5π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com