【題目】已知函數(shù)f(x)=在點(1,1)處的切線方程為x+y=2.
(1)求a,b的值;
(2)對函數(shù)f(x)定義域內(nèi)的任一個實數(shù)x,不等式f(x)-<0恒成立,求實數(shù)m的取值范圍.
【答案】(1) (2)m的取值范圍是(1,+∞).
【解析】試題分析:(1)先根據(jù)導(dǎo)數(shù)幾何意義得f′(1)=-1,再根據(jù) 解得a,b的值;(2)先變量分離得 最大值,再利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,進而得最大值,即得實數(shù)m的取值范圍.
試題解析:(1)由題f′(x)=,
又直線x+y=2的斜率為-1.2分
∴f′(1)=-1,即=-1.3分
又(1,1)點在函數(shù)f(x)=的圖象上,
故=1,
由解得
(2)由(1)得f(x)= (x>0),由f(x)<及x>0<m,8分
令g(x)=
g′(x)=
=,
令h(x)=1-x-ln xh′(x)=-1-<0(x>0),故h(x)在區(qū)間(0,+∞)上是減函數(shù),
故當(dāng)0<x<1時,h(x)>h(1)=0,
當(dāng)x>1時,h(x)<h(1)=0.10分
從而當(dāng)0<x<1時,g′(x)>0,當(dāng)x>1時,
g′(x)<
故g(x)max=g(1)=1,要使<m成立,只需m>1,
故m的取值范圍是(1,+∞).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的偶函數(shù)f(x)滿足f(x+1)=-f(x)且f(x)在[-1,0]上是增函數(shù),給出下列四個命題:
①f(x)是周期函數(shù);②f(x)的圖象關(guān)于x=1對稱;③f(x)在[1,2]上是減函數(shù);④f(2)=f(0).
其中正確命題的序號是____________.(請把正確命題的序號全部寫出來)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)有甲、乙兩套設(shè)備生產(chǎn)同一種產(chǎn)品,為了檢測兩套設(shè)備的生產(chǎn)質(zhì)量情況,隨機從兩套設(shè)備生產(chǎn)的大量產(chǎn)品中各抽取了50件產(chǎn)品作為樣本,檢測一項質(zhì)量指標(biāo)值,若該項質(zhì)量指標(biāo)值落在內(nèi),則為合格品,否則為不合格品. 表1是甲套設(shè)備的樣本的頻數(shù)分布表,圖1是乙套設(shè)備的樣本的頻率分布直方圖.
表1:甲套設(shè)備的樣本的頻數(shù)分布表
質(zhì)量指標(biāo)值 | [95,100) | [100,105) | [105,110) | [110,115) | [115,120) | [120,125] |
頻數(shù) | 1 | 4 | 19 | 20 | 5 | 1 |
圖1:乙套設(shè)備的樣本的頻率分布直方圖
(1)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有90%的把握認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標(biāo)值與甲、乙兩套設(shè)備的選擇有關(guān);
甲套設(shè)備 | 乙套設(shè)備 | 合計 | |||||||||||||
合格品 | |||||||||||||||
不合格品 | |||||||||||||||
合計 | ,求的期望. |
P(K2≥k0) | 0.15 | 0.10 | 0.050 | 0.025 | 0.010 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點為圓的圓心, 是圓上的動點,點在圓的半徑上,且有點和上的點,滿足, .
(1)當(dāng)點在圓上運動時,求點的軌跡方程;
(2)若斜率為的直線與圓相切,直線與(1)中所求點的軌跡交于不同的兩點, , 是坐標(biāo)原點,且時,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+ex- (x<0)與g(x)=x2+ln(x+a)圖象上存在關(guān)于y軸對稱的點,則a的取值范圍是( )
A. (-∞,) B. (-∞,)
C. (-, ) D. (-, )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x(1-)是R上的偶函數(shù).
(1)對任意的x∈[1,2],不等式m·≥2x+1恒成立,求實數(shù)m的取值范圍.
(2)令g(x)=1-,設(shè)函數(shù)F(x)=g(4x-n)-g(2x+1-3)有零點,求實數(shù)n的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正四棱錐S-ABCD中,SA=AB=2,E,F,G分別為BC,SC,CD的中點.設(shè)P為線段FG上任意一點.
(1)求證:EP⊥AC;
(2)當(dāng)P為線段FG的中點時,求直線BP與平面EFG所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱ABC-A1B1C1中,B1B=B1A=AB=BC,∠B1BC=90°,D為AC的中點,AB⊥B1D.
(1)求證:平面ABB1A1⊥平面ABC;
(2)在線段CC1(不含端點)上,是否存在點E,使得二面角E-B1D-B的余弦值為-?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,正三角形的邊長為2, 分別在三邊和上, 為的中點, .
(Ⅰ)當(dāng)時,求的大;
(Ⅱ)求的面積的最小值及使得取最小值時的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com