(本小題滿分16分) 本題請注意換算單位
某開發(fā)商用9000萬元在市區(qū)購買一塊土地建一幢寫字樓,規(guī)劃要求寫字樓每層建筑面積為2000平方米。已知該寫字樓第一層的建筑費(fèi)用為每平方米4000元,從第二層開始,每一層的建筑費(fèi)用比其下面一層每平方米增加100元。
(1)若該寫字樓共x層,總開發(fā)費(fèi)用為y萬元,求函數(shù)y=f(x)的表達(dá)式;
(總開發(fā)費(fèi)用=總建筑費(fèi)用+購地費(fèi)用)
(2)要使整幢寫字樓每平方米開發(fā)費(fèi)用最低,該寫字樓應(yīng)建為多少層?
(1);(2) 30層.
解析試題分析:(1)由已知,寫字樓最下面一層的總建筑費(fèi)用為:
(元)(萬元),
從第二層開始,每層的建筑總費(fèi)用比其下面一層多:
(元)(萬元),
寫字樓從下到上各層的總建筑費(fèi)用構(gòu)成以800為首項(xiàng),20 為公差的等差數(shù)列
所以函數(shù)表達(dá)式為:
;…………8分
(2)由(1)知寫字樓每平方米平均開發(fā)費(fèi)用為:
(元)
當(dāng)且僅當(dāng),即時(shí)等號成立.
答:該寫字樓建為30層時(shí),每平方米平均開發(fā)費(fèi)用最低. …………16分
考點(diǎn):本題考查數(shù)列的應(yīng)用;函數(shù)模型的選擇與應(yīng)用;基本不等式在最值問題中的應(yīng)用.
點(diǎn)評:本題考查等差數(shù)列模型的構(gòu)建、基本不等式的運(yùn)用及利用數(shù)學(xué)知識解決實(shí)際問題的能力,屬于中檔題。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)定義在實(shí)數(shù)R上的函數(shù)y= f(x)是偶函數(shù),當(dāng)x≥0時(shí),.
(Ⅰ)求f(x)在R上的表達(dá)式;
(Ⅱ)求y=f(x)的最大值,并寫出f(x)在R上的單調(diào)區(qū)間(不必證明).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題兩小題,每題6分,滿分12分)
⑴對任意,試比較與的大;
⑵已知函數(shù)的定義域?yàn)镽,求實(shí)數(shù)k的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù)
(1)若試判斷函數(shù)零點(diǎn)個(gè)數(shù);
(2)若對任意的,且<,(>0),試證明:
>成立。
(3)是否存在,使同時(shí)滿足以下條件:①對任意,,且②對任意的,都有?若存在,求出的值,若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
某單位用2160萬元購得一塊空地,計(jì)劃在該地塊上建造一棟至少10層、每層2000平方米的樓房.經(jīng)測算,如果將樓房建為x(x≥10)層,則每平方米的平均建筑費(fèi)用為560+48x(單位:元).為了使樓房每平方米的平均綜合費(fèi)用最少,該樓房應(yīng)建為多少層?
(注:平均綜合費(fèi)用=平均建筑費(fèi)用+平均購地費(fèi)用,平均購地費(fèi)用=)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分13分)某產(chǎn)品生產(chǎn)廠家根據(jù)以往的生產(chǎn)銷售經(jīng)驗(yàn)得到下面有關(guān)生產(chǎn)銷售的統(tǒng)計(jì)規(guī)律:每生產(chǎn)產(chǎn)品(百臺),其總成本為(萬元),其中固定成本為2.8萬元,并且每生產(chǎn)1百臺的生產(chǎn)成本為2萬元(總成本=固定成本+生產(chǎn)成本).銷售收入(萬元)滿足,假定該產(chǎn)品產(chǎn)銷平衡(即生產(chǎn)的產(chǎn)品都能賣掉),根據(jù)上述統(tǒng)計(jì)規(guī)律,請完成下列問題:
(1)寫出函數(shù)的解析式;
(2)寫出利潤函數(shù)的解析式(利潤=銷售收入—總成本);
(3)工廠生產(chǎn)多少臺產(chǎn)品時(shí),可使盈利最多?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(理科題)(本小題12分)
某房產(chǎn)開發(fā)商投資81萬元建一座寫字樓,第一年裝修費(fèi)為1萬元,以后每年增加2萬元,把寫字樓出租,每年收入租金30萬元。
(1)若扣除投資和各種裝修費(fèi),則從第幾年開始獲取純利潤?
(2)若干年后開發(fā)商為了投資其他項(xiàng)目,有兩種處理方案①年平均利潤最大時(shí)以46萬元出售該樓;
②純利潤總和最大時(shí),以10萬元出售樓,問選擇哪種方案盈利更多?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(16分)已知二次函數(shù)的圖像關(guān)于直線對稱,且在軸上截得的線段長為2.若的最小值為,求:
(1)函數(shù)的解析式;
(2)函數(shù)在上的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com