16.某單位從包括甲、乙在內(nèi)的5名應(yīng)聘者中招聘2人,如果這5名應(yīng)聘者被錄用的機(jī)會(huì)均等,則甲、乙兩人中至少有1人被錄用的概率是$\frac{7}{10}$.

分析 列舉出所有可能的基本事件和符合條件的基本事件,使用古典概型的概率計(jì)算公式計(jì)算概率.

解答 解:設(shè)剩余三名應(yīng)聘者為a,b,c,則從5人中錄用兩人的所有可能結(jié)果共有10個(gè),
分別為(甲,乙),(甲,a),(甲,b),(甲,c),(乙,a),(乙,b),(乙,c),(a,b),(a,c),(b,c).
其中甲乙兩人至少有1人被錄用的基本事件有7個(gè),分別是(甲,乙),(甲,a),(甲,b),(甲,c),(乙,a),(乙,b),(乙,c).
∴甲、乙兩人中至少有1人被錄用的概率P=$\frac{7}{10}$.
故答案為:$\frac{7}{10}$

點(diǎn)評(píng) 本題考查了古典概型的概率計(jì)算,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知定義在R上的函數(shù)f(x)是奇函數(shù),且f(x)在(-∞,0)上是減函數(shù),f(2)=0,g(x)=f(x+2),則不等式xg(x)≤0的解集是(  )
A.(-∞,-2]∪[2,+∞)B.[-4,-2]∪[0,+∞)C.(-∞,-4]∪[-2,+∞)D.(-∞,-4]∪[0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知定義在R上的偶函數(shù)f(x)在[0,+∞)上遞減,若不等式f(-ax+x3+1)+f(ax-x3-1)≥2f(1)對(duì)x∈(0,$\sqrt{2}$]恒成立,則實(shí)數(shù)a的取值范圍為(  )
A.[2,4]B.[2,+∞)C.[3,4]D.[2,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知Sn為等差數(shù)列{an}的前n項(xiàng)和,a2=2,S4=14,則S6等于(  )
A.32B.39C.42D.45

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知復(fù)數(shù)z滿足z=$\frac{{5i}^{5}}{2{-i}^{3}}$-3i,則復(fù)數(shù)z在復(fù)平面上對(duì)應(yīng)的點(diǎn)在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)=$\left\{\begin{array}{l}{sinx,sinx≤cosx}\\{cosx,sinx>cosx}\\{\;}\end{array}\right.$,則下列結(jié)論正確的是( 。
A.函數(shù)f(x)是偶函數(shù)B.函數(shù)f(x)在[0,$\frac{π}{2}$]上單調(diào)遞增
C.函數(shù)f(x)是周期為π的周期函數(shù)D.函數(shù)f(x)的值域?yàn)閇-1,$\frac{\sqrt{2}}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.用xi表示某人2016年3月份第i天的手機(jī)流量,計(jì)算該人3月的手機(jī)流量總量的程序框圖如圖,則判斷框中可以填入( 。
A.i≤31?B.i<31?C.i>31?D.i≥31?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1(-c,0),F(xiàn)2(c,0),O為原點(diǎn),第一象限的點(diǎn)M為雙曲線C漸近線上的一點(diǎn),且|OM|=c,點(diǎn)A為雙曲線C的右頂點(diǎn),若cos∠MOA=$\frac{\sqrt{21}}{7}$,則雙曲線C的離心率為( 。
A.$\frac{12}{7}$B.$\frac{7}{3}$C.$\frac{3}{7}$$\sqrt{21}$D.$\frac{\sqrt{21}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=$\sqrt{3}cos(\frac{π}{2}-x)+2{cos^2}\frac{x}{2}$.
(Ⅰ)求$f(\frac{π}{3})$的值和f(x)的最小正周期;
(Ⅱ)求f(x)在[0,π]上的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案