20.?dāng)?shù)列-$\frac{1}{2}$,$\frac{1}{4}$,-$\frac{1}{8}$,$\frac{1}{16}$,…的一個(gè)通項(xiàng)公式是(  )
A.-$\frac{1}{{2}^{n}}$$\frac{(-1)^{n}}{{2}^{n}}$B.$\frac{(-1)^{n}}{{2}^{n}}$C.$\frac{(-1)^{n+1}}{{2}^{n}}$D.$\frac{(-1)^{n}}{{2}^{n-1}}$

分析 由題意可知,分母為2n,第n項(xiàng)的符號(hào)為(-1)n

解答 解:數(shù)列-$\frac{1}{2}$,$\frac{1}{4}$,-$\frac{1}{8}$,$\frac{1}{16}$,…的一個(gè)通項(xiàng)公式$\frac{(-1)^{n}}{{2}^{n}}$,
故選:B

點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)公式的求解,找出其中的規(guī)律是解決問(wèn)題的關(guān)鍵,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)A、B是鈍角三角形的兩個(gè)銳角,則點(diǎn)P(sinA-cosB,cosA-sinB)在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.為了測(cè)試某藥物的預(yù)防效果,進(jìn)行動(dòng)物試驗(yàn),發(fā)現(xiàn)在測(cè)試的50只未服藥的動(dòng)物中有20只患病,60只服藥的動(dòng)物中有10只患。謩e利用圖形和獨(dú)立性檢驗(yàn)的方法判斷藥物是否有效 你得到的結(jié)論在什么范圍內(nèi)有效.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知非零向量$\overrightarrow a,\overrightarrow b$的夾角為60°,且$,|{\overrightarrow b}|=2|{\overrightarrow a}|=2$,若向量$λ\overrightarrow a-\overrightarrow b$與$\overrightarrow a+2\overrightarrow b$互相垂直,則實(shí)數(shù)λ=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.某廣告的廣告費(fèi)用x與銷(xiāo)售額y的統(tǒng)計(jì)數(shù)據(jù)如表
廣告費(fèi)用x(萬(wàn)元)2345
銷(xiāo)售額y(萬(wàn)元)26394954
根據(jù)上表可得回歸方程中的$\stackrel{∧}$為9.4,據(jù)此模型預(yù)報(bào)廣告費(fèi)用為6萬(wàn)元時(shí)銷(xiāo)售額為( 。
A.63.6萬(wàn)元B.65.5萬(wàn)元C.67.7萬(wàn)元D.72.0萬(wàn)元

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知函數(shù)f(x)為一次函數(shù),其圖象經(jīng)過(guò)點(diǎn)(2,4),且${∫}_{0}^{1}$f(x)dx=3,則函數(shù)f(x)的解析式為f(x)=$\frac{2}{3}$x+$\frac{8}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)$f(x)=a(x-\frac{1}{x})-2lnx\;(a∈R)$.
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)設(shè)函數(shù)$g(x)=-\frac{a}{x}$.若至少存在一個(gè)x0∈[1,e],使得f(x0)>g(x0)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知z=$\frac{-3-i}{1+2i}$,則z的虛部為( 。
A.1B.-1C.-iD.i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖1,在等腰直角三角形ABC中,∠B=90°,將△ABC沿中位線DE翻折得到如圖2所示的空間圖形,使二面角A-DE-C的大小為θ(0<θ<$\frac{π}{2}$).

(1)求證:平面ABD⊥平面ABC;
(2)若θ=$\frac{π}{3}$,求直線AE與平面ABC所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案