【題目】如圖,游客從某旅游景區(qū)的景點(diǎn)A處下山至C處有兩種路徑.一種是從A沿直線步行到C,另一種是先從A沿索道乘纜車(chē)到B,然后從B沿直線步行到C.

現(xiàn)有甲、乙兩位游客從A處下山,甲沿AC勻速步行,速度為50 m/min,在甲出發(fā)2 min后,乙從A乘纜車(chē)到B,在B處停留1 min后,再?gòu)腂勻速步行到C.假設(shè)纜車(chē)勻速直線運(yùn)行的速度為130 m/min,山路AC長(zhǎng)為1 260 m,經(jīng)測(cè)量,cos A=,cos C=

(1)求索道AB的長(zhǎng);

(2)問(wèn)乙出發(fā)多少分鐘后,乙在纜車(chē)上與甲的距離最短?

(3)為使兩位游客在C處互相等待的時(shí)間不超過(guò)3分鐘,乙步行的速度應(yīng)控制在什么范圍內(nèi)?

答案】(1)1 040 m;(2);(3)

【解析】(1)中,因?yàn)閏os A=,cos C=,所以sin A=,sin C=

從而sin B=sin[π-(A+C)]=sin(A+C)=sin Acos C+cos Asin C=

由正弦定理,可得

所以索道AB的長(zhǎng)為1 040 m.(3分)

(2)假設(shè)乙出發(fā)t 分鐘后,甲、乙兩游客距離為d,此時(shí),甲行走了(100+50t)m,乙距離A處130t m,

所以由余弦定理,得,

因?yàn)?/span>,即0≤t≤8,所以當(dāng)分鐘時(shí),甲、乙兩游客距離最短.(6分)

(3)由正弦定理,得

乙從B出發(fā)時(shí),甲已走了50×(2+8+1)=550(m),還需走710 m才能到達(dá)C.

設(shè)乙步行的速度為v m/min,由題意得,解得,

所以為使兩位游客在C處互相等待的時(shí)間不超過(guò)3分鐘,乙步行的速度應(yīng)控制在(單位:m/min)范圍內(nèi).(10分)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了調(diào)查高一新生中女生的體重情況,校衛(wèi)生室隨機(jī)選20名女生作為樣本,測(cè)量她們的體重(單位:kg),獲得的所有數(shù)據(jù)按照區(qū)間, , 進(jìn)行分組,得到頻率分布直方圖如圖所示,已知樣本中體重在區(qū)間上的女生數(shù)與體重在區(qū)間上的女生數(shù)之比為.

(1)求的值;

(2)從樣本中體重在區(qū)間上的女生中隨機(jī)抽取兩人,求體重在區(qū)間上的女生至少有一人被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知袋中放有形狀大小相同的小球若干,其中標(biāo)號(hào)為0的小球1個(gè),標(biāo)號(hào)為1的小球1個(gè),標(biāo)號(hào)為2的小球個(gè),從袋中隨機(jī)抽取一個(gè)小球,取到標(biāo)號(hào)為2的小球的概率為,現(xiàn)從袋中不放回地隨機(jī)取出2個(gè)小球,記第一次取出的小球標(biāo)號(hào)為,第二次取出的小球標(biāo)號(hào)為.

(1)記“”為事件,求事件發(fā)生的概率.

(2)在區(qū)間上任取兩個(gè)實(shí)數(shù),求事件恒成立”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)為常數(shù),是自然對(duì)數(shù)的底數(shù)).

(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

(2)若函數(shù)內(nèi)存在兩個(gè)極值點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“雞兔同籠”問(wèn)題是我國(guó)古代著名的趣題之一.《孫子算經(jīng)》中就記載了這個(gè)有趣的問(wèn)題.書(shū)中這樣描述:今有雞兔同籠,上有三十五頭,下有九十四足,問(wèn)雞兔幾何?

試設(shè)計(jì)一個(gè)算法,輸入雞兔的總數(shù)量和雞兔的腳的總數(shù)量,分別輸出雞、兔的數(shù)量,寫(xiě)出程序語(yǔ)句.并畫(huà)出相應(yīng)的程序框圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將圓上每一點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉?lái)的,得曲線C.

)寫(xiě)出C的參數(shù)方程;

)設(shè)直線l C的交點(diǎn)為P1,P2,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,求過(guò)線段P1 P2的中點(diǎn)且與l垂直的直線的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,四邊形中, , ,將四邊形沿著折疊,得到圖2所示的三棱錐,其中

(1)證明:平面平面;

(2)若中點(diǎn),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為豐富人民群眾業(yè)余生活,某市擬建設(shè)一座江濱公園,通過(guò)專家評(píng)審篩選處建設(shè)方案A和B向社會(huì)公開(kāi)征集意見(jiàn),有關(guān)部分用簡(jiǎn)單隨機(jī)抽樣方法調(diào)查了500名市民對(duì)這兩種方案的看法,結(jié)果用條形圖表示如下:

(1)根據(jù)已知條件完成下面列聯(lián)表,并用獨(dú)立性檢驗(yàn)的方法分析,能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為是否選擇方案A和年齡段有關(guān)?

(2)根據(jù)(1)的結(jié)論,能否提出一個(gè)更高的調(diào)查方法,使得調(diào)查結(jié)果更具代表性,說(shuō)明理由.

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù))將的圖象向右平移兩個(gè)單位,得到函數(shù)的圖象.

(1)求函數(shù)的解析式;

(2)若方程上有且僅有一個(gè)實(shí)根,求的取值范圍;

(3)若函數(shù)的圖像關(guān)于直線對(duì)稱,設(shè),已知對(duì)任意的恒成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案