精英家教網 > 高中數學 > 題目詳情

【題目】已知袋中放有形狀大小相同的小球若干,其中標號為0的小球1個,標號為1的小球1個,標號為2的小球個,從袋中隨機抽取一個小球,取到標號為2的小球的概率為,現從袋中不放回地隨機取出2個小球,記第一次取出的小球標號為,第二次取出的小球標號為.

(1)記“”為事件,求事件發(fā)生的概率.

(2)在區(qū)間上任取兩個實數,求事件恒成立”的概率.

【答案】(1) (2)

【解析】試題分析:

(1)由題意可得基本事件的總數為12,利用古典概型公式可得事件發(fā)生的概率;

(2)利用題意得到關于x,y的不等式組,結合線性規(guī)劃相關知識和幾何概型計算公式可得事件恒成立”的概率.

試題解析:

(1)由題意可知,基本事件的總數為12,事件所包含的基本事件個數為4

事件發(fā)生的概率

(2)由題意得

事件恒成立

有幾何概型知

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在如圖所示的多面體中, 平面, , , , , 的中點.

(1)求證: 平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】“DD共享單車”是為城市人群提供便捷經濟、綠色低碳的環(huán)保出行方式,根據目前在三明市的投放量與使用的情況,有人作了抽樣調查,抽取年齡在二十至五十歲的不同性別的騎行者,統(tǒng)計數據如下表所示:

男性

女性

合計

20~35歲

40

100

36~50歲

40

90

合計

100

90

190

(1)求統(tǒng)計數據表中的值;

(2)假設用抽到的100名20~35歲年齡的騎行者作為樣本估計全市的該年齡段男女使用“DD共享單車”情況,現從全市的該年齡段騎行者中隨機抽取3人,求恰有一名女性的概率;

(3)根據以上列聯表,判斷使用“DD共享單車”的人群中,能否有的把握認為“性別”與“年齡”有關,并說明理由.

參考數表:

參考公式: , .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數, .

)當時,求曲線在點處的切線方程;

)當時,求函數的單調區(qū)間;

)當時,函數上的最大值為,若存在,使得成立,求實數b的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了弘揚民族文化,某校舉行了“我愛國學,傳誦經典”考試,并從中隨機抽取了100名考生的成績(得分均為整數,滿足100分)進行統(tǒng)計制表,其中成績不低于80分的考生被評為優(yōu)秀生,請根據頻率分布表中所提供的數據,用頻率估計概率,回答下列問題.

分組

頻數

頻率

5

0.05

0.20

35

25

0.25

15

0.15

合計

100

1.00

(1)求的值并估計這100名考生成績的平均分;

(2)按頻率分布表中的成績分組,采用分層抽樣抽取20人參加學校的“我愛國學”宣傳活動,求其中優(yōu)秀生的人數;

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)若,求曲線在點處的切線方程;

(2)若函數在其定義域內為增函數,求的取值范圍;

(3)在(2)的條件下,設函數,若在上至少存在一點,使得成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知是兩條不重合的直線, 是兩個不重合的平面,給出下列命題:

①若, ,則;

②若, ,則;

③若, , ,則;

④當,且時,若,則.

其中正確命題的個數是( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,游客從某旅游景區(qū)的景點A處下山至C處有兩種路徑.一種是從A沿直線步行到C,另一種是先從A沿索道乘纜車到B,然后從B沿直線步行到C.

現有甲、乙兩位游客從A處下山,甲沿AC勻速步行,速度為50 m/min,在甲出發(fā)2 min后,乙從A乘纜車到B,在B處停留1 min后,再從B勻速步行到C.假設纜車勻速直線運行的速度為130 m/min,山路AC長為1 260 m,經測量,cos A=,cos C=

(1)求索道AB的長;

(2)問乙出發(fā)多少分鐘后,乙在纜車上與甲的距離最短?

(3)為使兩位游客在C處互相等待的時間不超過3分鐘,乙步行的速度應控制在什么范圍內?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知定義域為R的函數f(x)= 是奇函數.
(1)求f(x)的解析式;
(2)若對任意t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范圍.

查看答案和解析>>

同步練習冊答案