【題目】設(shè)集合,,若,則實數(shù)的取值范圍是_____.
【答案】
【解析】
若A∩B≠,得x2+2(1﹣a)x+3﹣a≤0在x∈[0,3]有解,分離變量再構(gòu)造函數(shù)g(t),轉(zhuǎn)為求函數(shù)最值即可得解.
集合A={x|x2+2(1﹣a)x+3﹣a≤0},B={x|0≤x≤3},
若A∩B≠,得x2+2(1﹣a)x+3﹣a≤0在x∈[0,3]有解,
即(2x+1)a≥x2+2x+3在x∈[0,3]有解,
設(shè)t=2x+1,則t∈[1,7],則x=,
則a≥=,
設(shè)g(t)=,t∈[1,7],
由對勾函數(shù)的性質(zhì)可得y=g(t)在(1,3)為減函數(shù),在(3,7)上為增函數(shù),又g(t)的最小值為g(3)=2,
所以實數(shù)a的取值范圍是[2,+∞),
故答案為:[2,+∞)
科目:高中數(shù)學 來源: 題型:
【題目】已知公差不為零的等差數(shù)列滿足,且成等比數(shù)列.
(1)求數(shù)列的通項公式;
(2)設(shè),求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四邊形 中, , , , , , 是 上的點, , 為 的中點,將 沿 折起到 的位置,使得 ,如圖2.
(1)求證:平面平面 ;
(2)求二面角 的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某廠家為了了解一款產(chǎn)品的質(zhì)量,隨機抽取200名男性使用者和100名女性使用者,對該款產(chǎn)品進行評分,繪制出如下頻率分布直方圖.
(1)利用組中值(數(shù)據(jù)分組后,一個小組的組中值是指這個小組的兩個端點的數(shù)的平均數(shù)),估計100名女性使用者評分的平均值;
(2)根據(jù)評分的不同,運用分層抽樣從這200名男性中抽取20名,在這20名中,從評分不低于80分的人中任意抽取3名,求這3名男性中恰有一名評分在區(qū)間的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知集合A={x|x2-2x-3≤0},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}.
(1)若A∩B=[0,3],求實數(shù)m的值;
(2)若ARB,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在如圖的程序框圖中,若輸入,,則輸出的值是( )
[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/3/21/1907086498037760/1907898837975040/STEM/25d20caaa911497ea3baaf4f7dee45a3.png]
A. 3 B. 7 C. 11 D. 33
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在如圖的程序框圖中,若輸入,,則輸出的值是( )
[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/3/21/1907086498037760/1907898837975040/STEM/25d20caaa911497ea3baaf4f7dee45a3.png]
A. 3 B. 7 C. 11 D. 33
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)討論的單調(diào)性;
(Ⅱ)是否存在實數(shù),使得有三個相異零點?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,點在橢圓上.
(1)求橢圓的方程;
(2)若不過原點的直線與橢圓相交于兩點,與直線相交于點,且是線段的中點,求面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com