f(x)=log0.5(x2-2x-3)遞增區(qū)間
(-∞,-1)
(-∞,-1)
分析:利用復(fù)合函數(shù)的單調(diào)性求解,先將函數(shù)轉(zhuǎn)化為兩個(gè)基本函數(shù)t=x2-2x-3,t>0,y=log0.5t,由同增異減的結(jié)論求解.
解答:解:令t=x2-2x-3,t>0
∴t在(-∝,-1)上是減函數(shù)
又∵y=log0.2t在(-∝,-1)是減函數(shù)
根據(jù)復(fù)合函數(shù)的單調(diào)性可知:
函數(shù)y=log0.2(x2-2x-3)的單調(diào)遞增區(qū)間為(-∝,-1)
故答案為;(-∞,-1)
點(diǎn)評(píng):本題主要考查復(fù)合函數(shù)的單調(diào)性,結(jié)論是同增異減,一定要注意定義域,這類題,彈性空間大,可難可易.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直角坐標(biāo)系中橫坐標(biāo)、縱坐標(biāo)均為整數(shù)的點(diǎn)稱為格點(diǎn),如果函數(shù)f(x)的圖象恰好通過(guò)k(k∈N*)個(gè)格點(diǎn),則稱函數(shù)f(x)為k階格點(diǎn)函數(shù)、下列函數(shù):①f(x)=sinx;②f(x)=π(x-1)2+3;③f(x)=(
1
3
)x
;④f(x)=log0.6x其中是一階格點(diǎn)函數(shù)的有( 。
A、①②B、①④
C、①②④D、①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直角坐標(biāo)系中橫坐標(biāo)、縱坐標(biāo)均為整數(shù)的點(diǎn)稱為格點(diǎn),如果函數(shù)f(x)的圖象恰好通過(guò)k(k∈N*)個(gè)格點(diǎn),則稱函數(shù)f(x)為k階格點(diǎn)函數(shù),下列函數(shù):
①f(x)=sinx;②f(x)=3π(x-1)2+2;③f(x)=(
14
)x
;④f(x)=log0.5x,其中是一階格點(diǎn)函數(shù)的有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=log0.6(-3x+2)的單調(diào)遞增區(qū)間為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=log0.1(x2-2x)的單調(diào)遞減區(qū)間是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案