精英家教網 > 高中數學 > 題目詳情

【題目】在高一某班的元旦文藝晚會中,有這么一個游戲:一盒子內裝有6張大小和形狀完全相同的卡片,每張卡片上寫有一個成語,它們分別為意氣風發(fā)、風平浪靜、心猿意馬、信馬由韁、氣壯山河、信口開河,從盒內隨機抽取2張卡片,若這2張卡片上的2個成語有相同的字就中獎,則該游戲的中獎率為________.

【答案】

【解析】

先列舉出總的基本事件,在找出其中有2個成語有相同的字的基本事件個數,進而可得中獎率.

解:先觀察成語中的相同的字,用字母來代替這些字,氣—A,風—B,馬—C,信—D,河—E,意—F,用ABF,BCF,CDAE,DE分別表示成語意氣風發(fā)、風平浪靜、心猿意馬、信馬由韁、氣壯山河、信口開河,

則從盒內隨機抽取2張卡片有

共15個基本事件,

其中有相同字的有共6個基本事件,

該游戲的中獎率為,

故答案為:.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】隨著手機的普及,大學生迷戀手機的現象非常嚴重.為了調查雙休日大學生使用手機的時間,某機構采用不記名方式隨機調查了使用手機時間不超過10小時的50名大學生,將50人使用手機的時間分成5組:,,,分別加以統(tǒng)計,得到下表,根據數據完成下列問題:

使用時間/

大學生/

5

10

15

12

8

1)完成頻率分布直方圖,并根據頻率分布直方圖估計大學生使用手機時間的中位數(保留小數點后兩位);

2)用分層抽樣的方法從使用手機時間在區(qū)間,,的大學生中抽取6人,再從這6人中隨機抽取2人,求這2人取自不同使用時間區(qū)間的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在直三棱柱中,,點,分別為棱,,的中點.

1)求證:平面;

2)求二面角的大。

3)在線段上是否存在一點,使得直線與平面所成的角為?如果存在,求出線段的長;如果不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若函數對定義域內的每一個值,在其定義域內都存在唯一的,使成立,則該函數為“依附函數”.

(1)判斷函數是否為“依附函數”,并說明理由;

(2)若函數在定義域上“依附函數”,求的取值范圍;

(3)已知函數在定義域上為“依附函數”.若存在實數,使得對任意的,不等式都成立,求實數的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數對任意實數都滿足,且,,當時,.

(1)判斷函數的奇偶性;

(2)判斷函數上的單調性,并給出證明;

(3)若,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】從全校參加科技知識競賽初賽的學生試卷中,抽取一個樣本,考察競賽的成績分布.將樣本分成5組,繪成頻率分布直方圖(如圖),圖中從左到右各小組的小長方形的高之比是,最后一組的頻數是6.請結合頻率分布直方圖提供的信息,解答下列問題:

1)樣本的容量是多少?

2)求樣本中成績在分的學生人數;

3)從樣本中成績在90.5分以上的同學中隨機地抽取2人參加決賽,求最高分甲被抽到的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,平面 平面,BC//平面PAD, ,.

求證:(1) 平面;

(2)平面平面.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某個比賽安排4名志愿者完成6項工作,每人至少完成一項,每項工作由一人完成,則不同的安排方式有多少種(

A.7200B.4800C.2640D.1560

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知是定義在上的奇函數,且滿足,當時,,則函數在區(qū)間上所有零點的個數為( )

A.0B.2C.4D.6

查看答案和解析>>

同步練習冊答案