在下列區(qū)間內(nèi),函數(shù)f(x)=x3-2x2+x+5有零點的區(qū)間是(  )
A、(-3,-2)
B、(-2,-1)
C、(-1,0)
D、(0,1)
考點:函數(shù)零點的判定定理
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用函數(shù)零點存在判定定理即可得出.
解答: 解:∵f(-3)=-43<0,f(-2)=-13<0,f(-1)=1>0,f(0)=f(1)=5>0,
由f(-2)f(-1)<0,可知函數(shù)f(x)在區(qū)間(-2,-1)內(nèi)有零點.
故選:B.
點評:本題考查了函數(shù)零點存在判定定理,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線G:y2=2px(p>0)與圓E:(x+
p
2
)2+y2=r2
(r>0),C,D拋物線上兩點,CD⊥x軸,且CD過拋物線的焦點F,EC=2
2

(1)求拋物線G的方程.
(2)過焦點F的直線l與圓E交于A,B兩不同點,試問△EAB是否存在面積的最大值,若存在求出相應(yīng)直線的斜率,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個容量為20的樣本數(shù)據(jù)分組后,分組與頻數(shù)分別如下:(10,20],2;(20,30],3;(30,40],4;(40,50],5;(50,60],4;(60,70],2;則樣本在(15,50]上的頻率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f是從集合A到集合B的映射,下列四個說法中正確的是( 。
①集合A中的每一個元素在集合B中都有元素與之對應(yīng);
②集合B中的每一個元素在集合A中也都有元素與之對應(yīng);
③集合A中不同的元素在集合B中的對應(yīng)元素也不同;
④集合B中不同的元素在集合A中的對應(yīng)元素也不同.
A、①和②B、②和③
C、③和④D、①和④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解關(guān)于x的不等式
k(1-x)
x-2
+1<0(k≥1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C:
x=2cosα
y=3sinα
(α為參數(shù))與極坐標(biāo)下的點M(2,
π
4
)

(1)爬電點M與曲線C的位置關(guān)系;
(2)在極坐標(biāo)系下,將M繞極點逆時針旋轉(zhuǎn)θ(θ∈[0,π]),得到點M',若點M'在曲線C上,求θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=2x+
a
2x
-1(a為常數(shù))
(1)當(dāng)a<0時,證明f(x)在R上是增函數(shù);
(2)當(dāng)a=0時,若函數(shù)y=g(x)的圖象與y=f(x)的圖象關(guān)于直線x=1對稱,求函數(shù)y=g(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知雙曲線與橢圓
x2
27
+
y2
36
=1有相同的焦點且與橢圓的一個交點的縱坐標(biāo)為4,求雙曲線的方程.
(2)求雙曲線
x2
4
-
y2
3
=1
有相同的漸近線且過點(2,3)的雙曲方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)定義在R上的函數(shù)f(x)滿足f(x)•f(x+2)=13,若f(1)=2,則f(2009)=
 

查看答案和解析>>

同步練習(xí)冊答案