【題目】為了了解居民消費情況,某地區(qū)調(diào)查了10000戶小家庭的日常生活平均月消費金額,根據(jù)所得數(shù)據(jù)繪制了樣本頻率分布直方圖,如圖所示,每戶小家庭的平均月消費金額均不超過9千元,其中第六組第七組第八組尚未繪制完成,但是已知這三組的頻率依次成等差數(shù)列,且第六組戶數(shù)比第七組多500戶,
(1)求第六組第七組第八組的戶數(shù),并補畫圖中所缺三組的直方圖;
(2)若定義月消費在3千元以下的小家庭為4類家庭,定義月消費在3千元至6千無的小家庭為B類家庭,定義月消費6千元以上的小家庭為C類家庭,現(xiàn)從這10000戶家庭中按分層抽樣的方法抽取80戶家庭召開座談會,間A,B,C各層抽取的戶數(shù)分別是多少?
【答案】(1)第六七八組的戶數(shù)分別是:1500戶1000戶500戶,直方圖見解析;(2)從A,B,C三類家庭分別抽取的戶數(shù)分別是18戶48戶14戶.
【解析】
(1)設(shè)第六七八組的戶數(shù)分別是x,y,z,再通過已知求出它們即得解,再求出第六七八組的小矩形高度,補充完整頻率分布直方圖;(2)求出A類家庭的頻率之和、B類家庭的頻率之和、C類家庭的頻率之和,即得解.
(1)設(shè)第六七八組的戶數(shù)分別是x,y,z,
它們的頻率之和為:,
所以這三組的戶數(shù)之和為:.
由于這三組的頻率依次成等差數(shù)列,所以x,y,z也成等差數(shù)列,,
又,,解得:,,.
所以第六七八組的小矩形高度分別為:,,.
補直方圖(需注明第七組的小矩形高度為0.10,第六八兩組分別用虛線對應(yīng)0.15和0.05.)
(2)A類家庭的頻率之和為:;
B類家庭的頻率之和為:;
C類家庭的頻率之和為:.
故A,B,C類家庭分別抽取的戶數(shù)分別為:,,.
答:(1)第六七八組的戶數(shù)分別是:1500戶1000戶500戶;
(2)從A,B,C三類家庭分別抽取的戶數(shù)分別是18戶48戶14戶.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】南通風(fēng)箏是江蘇傳統(tǒng)手工藝品之一.現(xiàn)用一張長2 m,寬1.5 m的長方形牛皮紙ABCD裁剪風(fēng)箏面,裁剪方法如下:分別在邊AB,AD上取點E,F,將三角形AEF沿直線EF翻折到處,點落在牛皮紙上,沿,裁剪并展開,得到風(fēng)箏面,如圖1.
(1)若點E恰好與點B重合,且點在BD上,如圖2,求風(fēng)箏面的面積;
(2)當(dāng)風(fēng)箏面的面積為時,求點到AB距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次高三年級統(tǒng)一考試中,數(shù)學(xué)試卷有一道滿分10分的選做題,學(xué)生可以從,兩道題目中任選一題作答.某校有900名高三學(xué)生參加了本次考試,為了了解該校學(xué)生解答該選做題的得分情況,計劃從900名考生的選做題成績中隨機抽取一個容量為10的樣本,為此將900名考生選做題的成績按照隨機順序依次編號為001一900.
(1)若采用隨機數(shù)表法抽樣,并按照以下隨機數(shù)表,以方框內(nèi)的數(shù)字5為起點,從左向右依次讀取數(shù)據(jù),每次讀取三位隨機數(shù),一行讀數(shù)用完之后接下一行左端.寫出樣本編號的中位數(shù);
(2)若采用系統(tǒng)抽樣法抽樣,且樣本中最小編號為08,求樣本中所有編號之和:
(3)若采用分層軸樣,按照學(xué)生選擇題目或題目,將成績分為兩層,且樣本中題目的成績有8個,平均數(shù)為7,方差為4:樣本中題目的成績有2個,平均數(shù)為8,方差為1.用樣本估計900名考生選做題得分的平均數(shù)與方差.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在上的奇函數(shù)滿足.且當(dāng)時,.若對于任意,都有,則實數(shù)的取值范圍為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)某農(nóng)產(chǎn)品近幾年的產(chǎn)量統(tǒng)計如下表:
(1)根據(jù)表中數(shù)據(jù),建立關(guān)于的線性回歸方程;
(2)若近幾年該農(nóng)產(chǎn)品每千克的價格 (單位:元)與年產(chǎn)量滿足的函數(shù)關(guān)系式為,且每年該農(nóng)產(chǎn)品都能售完.
①根據(jù)(1)中所建立的回歸方程預(yù)測該地區(qū)年該農(nóng)產(chǎn)品的產(chǎn)量;
②當(dāng)為何值時,銷售額最大?
附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為: , .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,且曲線的極坐標(biāo)方程為.
(1)寫出直線的普通方程與曲線的直角坐標(biāo)方程;
(2)設(shè)直線上的定點在曲線外且其到上的點的最短距離為,試求點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)點A是拋物線上到直線的距離最短的點,點B是拋物線上異于點A的一點,直線AB與l交于P,過點P作y軸的平行線交拋物線于點C.
(1)求點A的坐標(biāo);
(2)求證:直線BC過定點;
(3)求面積的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com