在空間直角坐標(biāo)系O-xyz中,已知A(1,-2,3),B(2,1,-1),若直線AB交平面xOz于點(diǎn)C,則點(diǎn)C的坐標(biāo)為
 
考點(diǎn):空間中的點(diǎn)的坐標(biāo)
專題:空間位置關(guān)系與距離
分析:設(shè)出C點(diǎn)的坐標(biāo)為(x,0,z),由向量的坐標(biāo)表示得出
AB
AC
的坐標(biāo),再根據(jù)向量共線,列出方程組,求出正確的答案.
解答: 解:設(shè)C點(diǎn)坐標(biāo)為(x,0,z),則有
AB
=(1,3,-4),
AC
=(x-1,2,z-3)
∵向量
AB
AC
共線,
AB
AC
,
即(1,3,-4)=λ(x-1,2,z-3),
λ(x-1)=1
2λ=3
λ(z-3)=-4

∴λ=
3
2

x=
5
3
,z=
1
3
;
∴C點(diǎn)坐標(biāo)為(
5
3
,0,
1
3
).
故答案為:(
5
3
,0,
1
3
).
點(diǎn)評(píng):本題考查了空間向量的應(yīng)用問題,解題時(shí)應(yīng)靈活利用空間向量的坐標(biāo)表示與向量共線進(jìn)行解答,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l過直線x+y=1和2x-3y+8=0的交點(diǎn)P.
(1)若直線l過點(diǎn)Q(0,-1),求直線l的斜率;
(2)若直線l與直線3x-4y+5=0垂直,求直線l的方程(請(qǐng)用一般式表達(dá)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某種彩票中獎(jiǎng)幾率為0.1%,某人連續(xù)買1000張彩票,下列說法正確的是( 。
A、此人一定會(huì)中獎(jiǎng)
B、此人一定不會(huì)中獎(jiǎng)
C、每張彩票中獎(jiǎng)的可能性都相等
D、最后買的幾張彩票中獎(jiǎng)的可能性大些

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直角△ABC中,∠C=90°,D,E分別為AC,AB的中點(diǎn),點(diǎn)F為線段CD上的一點(diǎn),將△ADE沿DE折起到△A1DE的位置,使得A1F⊥CD.
(1)求證:A1F⊥BE;
(2)設(shè)線段A1B的中點(diǎn)為Q,
求證EQ⊥平面A1BC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓短軸的一個(gè)端點(diǎn)到一個(gè)焦點(diǎn)的距離為5,焦點(diǎn)到橢圓中心的距離為3,則橢圓的標(biāo)準(zhǔn)方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

A、B是單位⊙O上的點(diǎn),點(diǎn)A是單位⊙與x軸正半軸交點(diǎn),點(diǎn)B在第二象限,記∠AOB=θ,且sinθ=
4
5
,求B點(diǎn)坐標(biāo)!

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線l:y=x+1是y=f(x)在x=2處的切線,則f(2)+f'(2)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
|1-
1
x
|,(x>0)
lg(-x),(x<0)
,則關(guān)于x的方程f(x)-x=0的解的個(gè)數(shù)是(  )
A、4B、3C、2D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x+2,x<0
x2,0≤x<2
1
2
,x≥2
,若f(x)=2,則x=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案