分析 (1)推導出AC⊥BD,AC⊥BB1,從而AC⊥平面BB1D1D,由此能證明平面ACE⊥平面BB1D1D.
(2)推導出A1C1∥AC,A1E=∥FC,從而四邊形A1ECF是平行四邊形,進而A1F∥CE,由此能證明平面EAC∥平面FA1C1.
解答 證明:(1)在正方體ABCD-A1B1C1D1中,BB1⊥平面ABCD,
AC?平面ABCD,四邊形ABCD是正方形,
∴AC⊥BD,AC⊥BB1,
∵BD∩BB1=B,∴AC⊥平面BB1D1D,
∵AC?平面ACE,∴平面ACE⊥平面BB1D1D.
(2)∵在正方體ABCD-A1B1C1D1中,DE=B1F=13DD1,
∴A1C1∥AC,A1E=∥FC,
∴四邊形A1ECF是平行四邊形,∴A1F∥CE,
∵AC∩CE=C,A1C1∩A1F=A1,
AC、CF?平面EAC,A1C1、A1F?平面FA1C1,
∴平面EAC∥平面FA1C1.
點評 本題考查面面垂直、面面平行的證明,考查空間中線線、線面、面面間的位置關系等基礎知識,考查推理論證能力、空間想象能力、運算求解能力,考查化歸與轉化思想、數(shù)形結合思想,是中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1-\frac{π}{16} | B. | \frac{π}{16} | C. | 1-\frac{π}{4} | D. | \frac{π}{4} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com