【題目】下列說法正確的是( )

A. 天氣預(yù)報說明天下雨的概率為,則明天一定會下雨

B. 不可能事件不是確定事件

C. 統(tǒng)計中用相關(guān)系數(shù)來衡量兩個變量的線性關(guān)系的強弱,若則兩個變量正相關(guān)很強

D. 某種彩票的中獎率是,則買1000張這種彩票一定能中獎

【答案】C

【解析】

運用概率的相關(guān)知識對四個選項逐一進行分析即可

對于,天氣預(yù)報說明天下雨的概率為,表示下雨的可能性比較大,是不確定事件,在一定條件下可能下雨,也可能不下雨,但明天一定會下雨是不正確的,故錯誤;

對于,根據(jù)定義可知不可能事件是確定事件,故錯誤;

對于,統(tǒng)計中用相關(guān)系數(shù)來衡量兩個變量的線性關(guān)系的強弱,若則兩個變量正相關(guān)很強,故正確;

對于,某種彩票的中獎率是,每一次買彩票的中獎是獨立的,并不是買1000張這種彩票一定能中獎,故錯誤

故選

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)有兩個極值點.

(1)求實數(shù)的取值范圍;

(2)求證: ,其中為自然對數(shù)的底數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)作為藍色海洋教育特色學(xué)校,隨機抽取100名學(xué)生,進行一次海洋知識測試,按測試成績(假設(shè)考試成績均在[65,90)內(nèi))分組如下:第一組[65,70),第二組 [70,75),第三組[75,80),第四組 [80,85),第五組 [85,90).得到頻率分布直方圖如圖C34.

(1)求測試成績在[80,85)內(nèi)的頻率;

(2)從第三、四、五組學(xué)生中用分層抽樣的方法抽取6名學(xué)生組成海洋知識宣講小組,定期在校內(nèi)進行義務(wù)宣講,并在這6名學(xué)生中隨機選取2名參加市組織的藍色海洋教育義務(wù)宣講隊,求第四組至少有1名學(xué)生被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓左右焦點為,左頂點為A(-2.0),上頂點為B,且∠=.

(1)求橢圓C的方程;

(2)探究軸上是否存在一定點P,過點P的任意直線與橢圓交于M、N不同的兩點,M、N不與點A重合,使得 為定值,若存在,求出點P;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018屆河南省南陽市第一中學(xué)高三上學(xué)期第八次考試】某校在一次期末數(shù)學(xué)測試中,為統(tǒng)計學(xué)生的考試情況,從學(xué)校的2000名學(xué)生中隨機抽取50名學(xué)生的考試成績,被測學(xué)生成績?nèi)拷橛?/span>60分到140分之間(滿分150),將統(tǒng)計結(jié)果按如下方式分成八組:第一組[60,70),第二組[70,80),……,第八組:[130,140],如圖是按上述分組方法得到的頻率分布直方圖的一部分.

1)求第七組的頻率,并完成頻率分布直方圖;

2)估計該校的2000名學(xué)生這次考試成績的平均分(可用中值代替各組數(shù)據(jù)平均值)

3)若從樣本成績屬于第一組和第六組的所有學(xué)生中隨機抽取2名,求他們的分差小于10分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為拋物線 的焦點,過點作兩條互相垂直的直線,直線于不同的兩點,直線于不同的兩點,記直線的斜率為.

(1)求的取值范圍;

(2)設(shè)線段的中點分別為點,求證: 為鈍角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,橢圓關(guān)于坐標(biāo)軸對稱,以坐標(biāo)原點為極點,以軸的正半軸為極軸建立極坐標(biāo)系, , 為橢圓上兩點.

(1)求直線的直角坐標(biāo)方程與橢圓的參數(shù)方程;

(2)若點在橢圓上,且點在第一象限內(nèi),求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義:若函數(shù)的定義域為,且存在非零常數(shù),對任意 , 恒成立,則稱為線周期函數(shù), 的線周期.

(1)下列函數(shù)①,②,③(其中表示不超過x的最大整數(shù)),是線周期函數(shù)的是 (直接填寫序號);

(2)若為線周期函數(shù),其線周期為,求證: 為周期函數(shù);

(3)若為線周期函數(shù),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C經(jīng)過點兩點,且圓心C在直線.

1)求圓C的方程;

2)設(shè),對圓C上任意一點P,在直線MC上是否存在與點M不重合的點N,使是常數(shù),若存在,求出點N坐標(biāo);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案