【題目】近年來,隨著網(wǎng)絡的普及,數(shù)碼產(chǎn)品早已走進千家萬戶的生活,為了節(jié)約資源,促進資源循環(huán)利用,折舊產(chǎn)品回收行業(yè)得到迅猛發(fā)展,電腦使用時間越長,回收價值越低,某二手電腦交易市場對2018年回收的折舊電腦交易前使用的時間進行了統(tǒng)計,得到如圖所示的頻率分布直方圖,在如圖對時間使用的分組中,將使用時間落入各組的頻率視為概率.
(1)若在該市場隨機選取1個2018年成交的二手電腦,求其使用時間在上的概率;
(2)根據(jù)電腦交易市場往年的數(shù)據(jù),得到如圖所示的散點圖及一些統(tǒng)計量的值,其中(單位:年)表示折舊電腦的使用時間,(單位:百元)表示相應的折舊電腦的平均交易價格.
由散點圖判斷,可采用作為該交易市場折舊電腦平均交易價格與使用年限的回歸方程,若,,選用如下參考數(shù)據(jù),求關于的回歸方程,并預測在區(qū)間(用時間組的區(qū)間中點值代表該組的值)上折舊電腦的價格.
5.5 | 8.5 | 1.9 | 301.4 | 79.75 | 385 |
附:參考公式:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為:,.參考數(shù)據(jù):,,,,.
科目:高中數(shù)學 來源: 題型:
【題目】正三棱柱的底面邊長是2,側棱長是4,是的中點.是中點,是中點,是中點,
(1)計算異面直線與所成角的余弦值
(2)求證:平面
(3)求證:面面
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某二手車直賣網(wǎng)站對其所經(jīng)營的一款品牌汽車的使用年數(shù)x與銷售價格y(單位:萬元,輛)進行了記錄整理,得到如下數(shù)據(jù):
(I)畫散點圖可以看出,z與x有很強的線性相關關系,請求出z與x的線性回歸方程(回歸系數(shù)精確到0.01);
(II)求y關于x的回歸方程,并預測某輛該款汽車當使用年數(shù)為10年時售價約為多少.
參考公式:
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有下列幾個命題:①“若p,則q”的否命題是“若,則”;②p是q的必要條件,r是q的充分不必要條件,則p是r的必要不充分條件;③若“”為真命題,則命題p,q中至多有一個為真命題;④過點的直線和圓相切的充要條件是直線斜率為.其中為真命題的有( )
A.①②B.①②③C.①③④D.①②③④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,四個點,,,中有3個點在橢圓:上.
(1)求橢圓的標準方程;
(2)過原點的直線與橢圓交于,兩點(,不是橢圓的頂點),點在橢圓上,且,直線與軸、軸分別交于、兩點,設直線,的斜率分別為,,證明:存在常數(shù)使得,并求出的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】生活中人們常用“通五經(jīng)貫六藝”形容一個人才識技藝過人,這里的“六藝”其實源于中國周朝的貴族教育體系,具體包括“禮、樂、射、御、書、數(shù)”.為弘揚中國傳統(tǒng)文化,某校在周末學生業(yè)余興趣活動中開展了“六藝”知識講座,每藝安排一節(jié),連排六節(jié),則滿足“數(shù)”必須排在前兩節(jié),“禮”和“樂”必須分開安排的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知下面四個命題:
①“若,則或”的逆否命題為“若且,則”
②“”是“”的充分不必要條件
③命題存在,使得,則:任意,都有
④若且為假命題,則均為假命題,其中真命題個數(shù)為( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點,直線,圓.
(1)求的取值范圍,并求出圓心坐標;
(2)有一動圓的半徑為,圓心在上,若動圓上存在點,使,求圓心的橫坐標的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com