5.在棱長為2的正方體ABCD-A1B1C1D1中任取一點M,則滿足∠AMB>90°的概率為( 。
A.$\frac{π}{24}$B.$\frac{π}{12}$C.$\frac{π}{8}$D.$\frac{π}{6}$

分析 在棱長為2的正方體ABCD-A1B1C1D1中任取一點M,滿足∠AMB>90°的區(qū)域的面積為半徑為1的球體的$\frac{1}{4}$,以體積為測度,即可得出結(jié)論.

解答 解:在棱長為2的正方體ABCD-A1B1C1D1中任取一點M,滿足∠AMB>90°的區(qū)域的面積為半徑為1的球體的$\frac{1}{4}$,體積為$\frac{1}{4}•\frac{4}{3}•π•{1}^{3}$=$\frac{π}{3}$,
∴所求概率為$\frac{\frac{π}{3}}{8}$=$\frac{π}{24}$,
故選:A.

點評 本題考查幾何概型的概率計算,關(guān)鍵是確定滿足條件的區(qū)域,利用體積比值求解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.對$?x∈(\;0\;,\;\frac{1}{3}\;)$,23x≤logax+1恒成立,則實數(shù)a的取值范圍是( 。
A.$(\;0\;,\;\frac{2}{3}\;)$B.$(\;0\;,\;\frac{1}{2}\;]$C.$[\;\frac{1}{3}\;,\;1\;)$D.$[\;\frac{1}{2}\;,\;1\;)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若一個圓柱的正視圖與其側(cè)面展開圖是相似矩形,則這個圓柱的全面積與側(cè)面積之比為( 。
A.$1+\sqrt{π}$B.1+$\frac{1}{{\sqrt{π}}}$C.$1+\frac{1}{{\sqrt{2π}}}$D.$1+\frac{1}{{2\sqrt{π}}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知定義在R上的偶函數(shù)f(x),滿足f(x+4)=f(x)+f(2),且0≤x≤2時,f(x)=$\left\{\begin{array}{l}-12{x^2}+12x,x∈[{0,1}]\\-4{x^2}+12x-8,x∈(1,2]\end{array}$,若函數(shù)g(x)=f(x)-a|x|(a≠0),在區(qū)間[-3,3]上至多有9個零點,則a=20-8$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=|x-2|+|2x+1|.
(Ⅰ)解不等式f(x)≥7;
(Ⅱ)若關(guān)于x的不等式f(x)+|x-2|>a恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.為治療某種流行疾病,醫(yī)生讓某患者服用一種抗生素,規(guī)定每天早上八時服一片,現(xiàn)知該藥片每片含藥量為128毫克,他的腎臟每天可從體內(nèi)濾出這種藥的50%,問:
(1)經(jīng)過多少天,該患者所服的第一片藥在他體內(nèi)殘留不超過1毫克?
(2)如果抵抗這種疾病要求體內(nèi)的藥物含量不低于25毫克,該患者自服藥起的6天內(nèi)都能抵抗這種疾病,那么該患者應(yīng)至少連續(xù)服藥多少天?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列結(jié)論正確的是( 。
A.命題“如果p2+q2=2,則p+q≤2”的否命題是“如果p+q>2,則p2+q2≠2”
B.命題p:?x∈[0,1],ex≥1,命題q:?x∈R,x2+x+1<0,則p∨q為假
C.“若am2<bm2,則a<b”的逆命題為真命題
D.若${(\sqrt{x}-\frac{1}{{2\root{3}{x}}})^n}$的展開式中第四項為常數(shù)項,則n=5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,邊長為2的等邊三角形ABC中,D為BC的中點,將△ABC沿AD翻折成直二面角B-AD-C,點E,F(xiàn)分別是AB,AC的中點.
(1)求證:BC∥平面DEF;
(2)在線段AB上是否存在一點P,使CP⊥DF?若存在,求出$\frac{AP}{PB}$的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知f(x)=ax4+bx2+c的圖象經(jīng)過點(0,1),且在x=1處的切線方程是y=x-2
(Ⅰ)求實數(shù)a,b,c的值;
(Ⅱ)求y=f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案