A. | $(\;0\;,\;\frac{2}{3}\;)$ | B. | $(\;0\;,\;\frac{1}{2}\;]$ | C. | $[\;\frac{1}{3}\;,\;1\;)$ | D. | $[\;\frac{1}{2}\;,\;1\;)$ |
分析 先構(gòu)造函數(shù)f(x)=x2+x,g(x)=-logax.h(x)=f(x)+g(x),將問題等價轉(zhuǎn)化為函數(shù)h(x)在區(qū)間(0,$\frac{1}{3}$)上恒有h(x)≤0,又函數(shù)為增函數(shù),故可求答案.
解答 解:構(gòu)造函數(shù)f(x)=23x,g(x)=-logax-1.
h(x)=f(x)+g(x).(0<x<$\frac{1}{3}$)
易知,在區(qū)間(0,$\frac{1}{3}$)上,函數(shù)f(x),g(x)均是遞增函數(shù),
∴函數(shù)h(x)=f(x)+g(x)在區(qū)間(0,$\frac{1}{3}$)上是遞增函數(shù).
由題設(shè)可知,函數(shù)h(x)在區(qū)間(0,$\frac{1}{3}$)上恒有h(x)≤0.
∴必有h($\frac{1}{3}$)≤0.
即有2-loga($\frac{1}{3}$)-1≤0.
整理就是logaa=1≤loga($\frac{1}{3}$),
∴實數(shù)a的取值范圍是$\frac{1}{3}$≤a<1.
故選C.
點評 本題考查指數(shù)函數(shù)與對數(shù)函數(shù)的圖象,函數(shù)恒成立問題,難度中檔.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3π}{4}$ | B. | $-\frac{3π}{4}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若m∥n,m⊥α,則n⊥α | B. | 若m⊥α,m⊥β,則α∥β | ||
C. | 若m⊥α,m∥n,n?β,則α⊥β | D. | 若m∥α,α∩β=n,則m∥n |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 1+a | C. | a2 | D. | 1+a+a2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{24}$ | B. | $\frac{π}{12}$ | C. | $\frac{π}{8}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com