11.用數(shù)學歸納法證明1+a+a2+…+an+1=$\frac{{1-{a^{n+2}}}}{1-a}({a≠0,1,n∈{N^*}})$,在驗證n=1成立時,計算左邊所得的項是( 。
A.1B.1+aC.a2D.1+a+a2

分析 在驗證n=1時,左端計算所得的項.把n=1代入等式左邊即可得到答案.

解答 解:用數(shù)學歸納法證明1+a+a2+…+an+1=$\frac{{1-{a^{n+2}}}}{1-a}({a≠0,1,n∈{N^*}})$,在驗證n=1時,把當n=1代入,
左端=1+a+a2
故選:D.

點評 此題主要考查數(shù)學歸納法證明等式的問題,屬于概念性問題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

1.若雙曲線$\frac{x^2}{9}-\frac{y^2}{4}=1$的兩條漸近線恰好是曲線$y=a{x^2}+\frac{1}{3}$的兩條切線,則a的值為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.如果曲線y=f(x)在點(2,3)處的切線過點(-1,2),則有( 。
A.f′(2)<0B.f′(2)=0C.f′(2)>0D.f′(2)不存在

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知過原點O的圓x2+y2-2ax=0又過點(4,2),(1)求圓的方程,(2)A為圓上動點,求弦OA中點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.化簡sin690°的值是(  )
A.0.5B.-0.5C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知A∈α,P∉α,$\overrightarrow{PA}$=(-$\frac{\sqrt{3}}{2}$,$\frac{1}{2}$,x)其中x>0,且|$\overrightarrow{PA|}$|=$\sqrt{3}$,平面α的一個法向量$\overrightarrow n=(0,-\frac{1}{2},-\sqrt{2})$.
(1)求x的值;
(2)求直線PA與平面α所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.對$?x∈(\;0\;,\;\frac{1}{3}\;)$,23x≤logax+1恒成立,則實數(shù)a的取值范圍是( 。
A.$(\;0\;,\;\frac{2}{3}\;)$B.$(\;0\;,\;\frac{1}{2}\;]$C.$[\;\frac{1}{3}\;,\;1\;)$D.$[\;\frac{1}{2}\;,\;1\;)$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.3、已知函數(shù)$f(x)=\left\{\begin{array}{l}1-{2^x},x≤0\\{x^2},x>0\end{array}\right.$,則f[f(-1)]=( 。
A.2B.1C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知定義在R上的偶函數(shù)f(x),滿足f(x+4)=f(x)+f(2),且0≤x≤2時,f(x)=$\left\{\begin{array}{l}-12{x^2}+12x,x∈[{0,1}]\\-4{x^2}+12x-8,x∈(1,2]\end{array}$,若函數(shù)g(x)=f(x)-a|x|(a≠0),在區(qū)間[-3,3]上至多有9個零點,則a=20-8$\sqrt{6}$.

查看答案和解析>>

同步練習冊答案