已知函數(shù),,其中,且.
⑴當(dāng)時,求函數(shù)的最大值;
⑵求函數(shù)的單調(diào)區(qū)間;
⑶設(shè)函數(shù)若對任意給定的非零實數(shù),存在非零實數(shù)),使得成立,求實數(shù)的取值范圍.

⑴-1; ⑵詳見解析; ⑶

解析試題分析:⑴令g′(x)=0求出根,判斷g′(x)在左右兩邊的符號,得到g(x)在上單調(diào)遞增,在上單調(diào)遞減,可知g(x)最大值為g(1),并求出最值;
⑵解不等式得出函數(shù)的單調(diào)增區(qū)間,導(dǎo)數(shù)小于零求出單調(diào)遞減區(qū)間,注意單調(diào)區(qū)間與定義域取交集;
⑶不等式恒成立就是求函數(shù)的最值,注意對參數(shù)的討論.
試題解析:⑴當(dāng)時, ∴
,則, ∴上單調(diào)遞增,在上單調(diào)遞減
                          (4分)
,(
∴當(dāng)時,,∴函數(shù)的增區(qū)間為,
當(dāng)時,,
當(dāng)時,,函數(shù)是減函數(shù);當(dāng)時,,函數(shù)是增函數(shù).
綜上得,當(dāng)時,的增區(qū)間為; 
當(dāng)時,的增區(qū)間為,減區(qū)間為   (10分)
⑶當(dāng),上是減函數(shù),此時的取值集合
當(dāng)時,
時,上是增函數(shù),此時的取值集合;
時,上是減函數(shù),此時的取值集合.
對任意給定的非零實數(shù),
①當(dāng)時,∵上是減函數(shù),則在上不存在實數(shù)),使得,則,要在上存在非零實數(shù)),使得成立,必定有,∴;
②當(dāng)時,時是單調(diào)函數(shù),則

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),
(1)若,求函數(shù)的單調(diào)區(qū)間;
(2)若恒成立,求實數(shù)的取值范圍;
(3)設(shè),若對任意的兩個實數(shù)滿足,總存在,使得成立,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

定義在上的函數(shù)同時滿足以下條件:
在(0,1)上是減函數(shù),在(1,+∞)上是增函數(shù);
是偶函數(shù);
在x=0處的切線與直線y=x+2垂直.
(1)求函數(shù)的解析式;
(2)設(shè)g(x)=,若存在實數(shù)x∈[1,e],使<,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

甲、乙兩地相距1000,貨車從甲地勻速行駛到乙地,速度不得超過80,已知貨車每小時的運輸成本(單位:元)由可變成本和固定成本組成,可變成本是速度平方的倍,固定成本為a元.
(1)將全程運輸成本y(元)表示為速度v()的函數(shù),并指出這個函數(shù)的定義域;
(2)為了使全程運輸成本最小,貨車應(yīng)以多大的速度行駛?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(Ⅰ)若,求在點處的切線方程;
(Ⅱ)求函數(shù)的極值點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)求的極值點;
(2)對任意的,記上的最小值為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)時取得極值.
(1)求a、b的值;(2)若對于任意的,都有成立,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(I)討論的單調(diào)性;
(Ⅱ)若在(1,+)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(Ⅰ)求處的切線方程;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)若,求證:.

查看答案和解析>>

同步練習(xí)冊答案