【題目】設 是實數(shù),則“ ”是“ ”的( )
A.充分而不必要條件
B.必要而不充分條件
C.充分必要條件
D.既不充分也不必要條件

【答案】D
【解析】 ,滿足 ,但 ,同樣 時,滿足 ,但 ,因此“ ”是“ ”的既不充分也不必要條件.
故答案為:D.本題考查的判斷充要條件的方法,我們可以根據(jù)充要條件的定義進行判斷,此題的關鍵是對不等式性質(zhì)的理解.判斷充要條件的方法是:
①若pq為真命題且qp為假命題,則命題p是命題q的充分不必要條件;
②若pq為假命題且qp為真命題,則命題p是命題q的必要不充分條件;
③若pq為真命題且qp為真命題,則命題p是命題q的充要條件;
④若pq為假命題且qp為假命題,則命題p是命題q的即不充分也不必要條件.
⑤判斷命題p與命題q所表示的范圍,再根據(jù)“誰大誰必要,誰小誰充分”的原則,判斷命題p與命題q的關系.
⑥涉及不等式平方大小的比較問題,舉反例不失為一種有效的方法.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列{an}的前n項和為Sn , 若點 在函數(shù)f(x)=﹣x+c的圖象上運動,其中c是與x無關的常數(shù),且a1=3.
(1)求數(shù)列{an}的通項公式;
(2)記 ,求數(shù)列{bn}的前n項和Tn的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】做一個無蓋的圓柱形水桶,若要使其體積是 ,且用料最省,則圓柱的底面半徑為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐 中, ,且 .

(1)證明:平面 ⊥平面 ;
(2)若 ,求二面角 的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設集合A={x|log2(x+1)<2},B={y|y= },則(RA)∩B=(
A.(0,3)
B.[0,4]
C.[3,4)
D.(﹣1,3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某賽季,甲、乙兩名籃球運動員都參加了場比賽,比賽得分情況如下(單位:分)

甲:

乙:

(1)根據(jù)得分情況記錄,作出兩名籃球運動員得分的莖葉圖,并根據(jù)莖葉圖,對甲、乙兩運動員得分作比較,寫出兩個統(tǒng)計結(jié)論;

(2)設甲籃球運動員場比賽得分平均值,將場比賽得分依次輸入如圖所示的程序框圖進行運算,問輸出的大小為多少?并說明的統(tǒng)計學意義;

(3)如果從甲、乙兩位運動員的場得分中,各隨機抽取一場不少于分的得分,求甲的得分大于乙的得分的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}為公差不為0的等差數(shù)列,滿足a1=5,且a2 , a9 , a30成等比數(shù)列.
(1)求{an}的通項公式;
(2)若數(shù)列{bn}滿足 =an(n∈N*),且b1= ,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知全集U=R,集合A={x|x2﹣x﹣6≤0}, ,那么集合A∩(UB)=(
A.[﹣2,4)
B.(﹣1,3]
C.[﹣2,﹣1]
D.[﹣1,3]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直角梯形ABCD中,AB⊥AD,AB∥DC,AB=2,AD=DC=1,圖中圓弧所在圓的圓心為點C,半徑為 ,且點P在圖中陰影部分(包括邊界)運動.若 =x +y ,其中x,y∈R,則4x﹣y的取值范圍是(
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案