【題目】整改校園內(nèi)一塊長(zhǎng)為15 m,寬為11 m的長(zhǎng)方形草地(如圖A),將長(zhǎng)減少1 m,寬增加1 m(如圖B).問草地面積是增加了還是減少了?假設(shè)長(zhǎng)減少x m,寬增加x m(x>0),試研究以下問題:

x取什么值時(shí),草地面積減少?

x取什么值時(shí),草地面積增加?

【答案】見解析

【解析】

先計(jì)算原草地的面積和整改后的草地面積,即得草地面積增加了. 設(shè)減少x m,寬增加x m后,計(jì)算出新草地的面積,再比較和原草地面積的大小,即得x取什么值時(shí),草地面積減少,

x取什么值時(shí),草地面積增加.

原草地面積S1=11×15=165(m2),

整改后草地面積為:S=14×12=168(m2),

S>S1,∴整改后草地面積增加了.

研究:長(zhǎng)減少x m,寬增加x m后,草地面積為:

S2=(11+x)(15-x),

S1S2=165-(11+x)(15-x)=x2-4x,

∴當(dāng)0<x<4時(shí),x2-4x<0,S1<S2;

當(dāng)x=4時(shí),x2-4x=0,S1S2.

當(dāng)x>4時(shí),x2-4x>0,S1>S2.

綜上所述,當(dāng)0<x<4時(shí),草地面積增加,

當(dāng)x=4時(shí),草地面積不變,

當(dāng)x>4時(shí),草地面積減少.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在區(qū)間[0,2]上任取兩個(gè)實(shí)數(shù)a,b,則函數(shù)f(x)=x3+ax﹣b在區(qū)間[﹣1,1]上有且只有一個(gè)零點(diǎn)的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】1)過點(diǎn)作直線使它被直線截得的線段被點(diǎn)平分,求直線的方程;

2)光線沿直線射入,遇直線后反射,求反射光線所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在參加市里主辦的科技知識(shí)競(jìng)賽的學(xué)生中隨機(jī)選取了40名學(xué)生的成績(jī)作為樣本,這40名學(xué)生的成績(jī)?nèi)吭?0分至100分之間,現(xiàn)將成績(jī)按如下方式分成6組:第一組,成績(jī)大于等于40分且小于50分;第二組,成績(jī)大于等于50分且小于60分;……第六組,成績(jī)大于等于90分且小于等于100分,據(jù)此繪制了如圖所示的頻率分布直方圖.在選取的40名學(xué)生中.

(1)求成績(jī)?cè)趨^(qū)間內(nèi)的學(xué)生人數(shù)及成績(jī)?cè)趨^(qū)間內(nèi)平均成績(jī);

(2)從成績(jī)大于等于80分的學(xué)生中隨機(jī)選3名學(xué)生,求至少有1名學(xué)生成績(jī)?cè)趨^(qū)間內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)的f(x)= sin(ωx+φ)(ω>0,﹣ )圖象關(guān)于直線x= 對(duì)稱,且圖象上相鄰兩個(gè)最高點(diǎn)的距離為π,若 (0<α<π),則 =(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某保險(xiǎn)公司針對(duì)一個(gè)擁有20000人的企業(yè)推出一款意外險(xiǎn)產(chǎn)品,每年每位職工只要交少量保費(fèi),發(fā)生意外后可一次性獲得若干賠償金.保險(xiǎn)公司把企業(yè)的所有崗位共分為A、B、C三類工種,從事三類工種的人數(shù)分布比例如圖,根據(jù)歷史數(shù)據(jù)統(tǒng)計(jì)出三類工種的賠付頻率如下表(并以此估計(jì)賠付頻率).

工種類別

A

B

C

賠付頻率

對(duì)于A、B、C三類工種職工每人每年保費(fèi)分別為a元,a元,b元,出險(xiǎn)后的賠償金額分別為100萬元,100萬元,50萬元,保險(xiǎn)公司在開展此項(xiàng)業(yè)務(wù)過程中的固定支出為每年10萬元.

(Ⅰ)若保險(xiǎn)公司要求利潤(rùn)的期望不低于保費(fèi)的20%,試確定保費(fèi)a、b所要滿足的條件;
(Ⅱ)現(xiàn)有如下兩個(gè)方案供企業(yè)選擇;
方案1:企業(yè)不與保險(xiǎn)公司合作,企業(yè)自行拿出與保險(xiǎn)提供的等額的賠償金額賠付給出險(xiǎn)職工;
方案2:企業(yè)與保險(xiǎn)公司合作,企業(yè)負(fù)責(zé)職工保費(fèi)的60%,職工個(gè)人負(fù)責(zé)保費(fèi)的40%,出險(xiǎn)后賠償金由保險(xiǎn)公司賠付.
若企業(yè)選擇翻翻2的支出(不包括職工支出)低于選擇方案1的支出期望,求保費(fèi)a、b所要滿足的條件,并判斷企業(yè)是否可與保險(xiǎn)公司合作.(若企業(yè)選擇方案2的支出低于選擇方案1的支出期望,且與(Ⅰ)中保險(xiǎn)公司所提條件不矛盾,則企業(yè)可與保險(xiǎn)公司合作.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知隨機(jī)變量X服從正態(tài)分布Nμ,σ2),且PμXμ)=0.954 4PμσXμσ)=0.682 6.μ4,σ1,則P5X6)=( )

A. 0.135 9 B. 0.135 8 C. 0.271 8 D. 0.271 6;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某小組6個(gè)人排隊(duì)照相留念.

(1)若分成兩排照相,前排2人,后排4人,有多少種不同的排法?

(2)若分成兩排照相,前排2人,后排4人,但其中甲必須在前排,乙必須在后排,有多少種排法?

(3)若排成一排照相,甲、乙兩人必須在一起,有多少種不同的排法?

(4)若排成一排照相,其中甲必在乙的右邊,有多少種不同的排法?

(5)若排成一排照相,其中有3名男生3名女生,且男生不能相鄰有多少種排法?

(6)若排成一排照相,且甲不站排頭乙不站排尾,有多少種不同的排法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法錯(cuò)誤的是( )

A. 命題x24x30,則x3”的逆否命題是:x≠3,則x24x3≠0”

B. “x>1”“|x|>0”的充分不必要條件

C. pq為假命題,則p、q均為假命題

D. 命題p“x0∈R使得x01<0”,則p“x∈R,均有x2x1≥0”

查看答案和解析>>

同步練習(xí)冊(cè)答案