7.已知函數(shù)y=f(x)的圖象關(guān)于原點(diǎn)對(duì)稱,且當(dāng)x∈(-∞,0),f(x)+xf′(x)<0成立,若a=(-2)×f(-2),b=f(1),c=3×f(3),則a,b,c的關(guān)系大小是( 。
A.b>a>cB.c>b>aC.c>a>bD.a>c>b

分析 構(gòu)造函數(shù)F(x)=xf(x),求導(dǎo)數(shù),判斷單調(diào)性求解,再判斷F(x)的奇偶性,即可得到F(-3)>F(-2)>F(-1),問題得以解決.

解答 解:令函數(shù)F(x)=xf(x),則F′(x)=f(x)+xf′(x)
∵f(x)+xf′(x)<0,
∴F(x)=xf(x)在(-∞,0)單調(diào)遞減,
∵函數(shù)y=f(x)的圖象關(guān)于原點(diǎn)對(duì)稱,
∴y=f(x)是定義在R上的奇函數(shù),
可知F(x)=xf(x)在R上為偶函數(shù)
∵a=-2f(-2),b=f(1),c=3•f(3),
∴a=F(-2),b=F(-1),c=F(-3)
∴F(-3)>F(-2)>F(-1),
即c>a>b
故選:C

點(diǎn)評(píng) 本題考察了復(fù)合函數(shù)的求導(dǎo),導(dǎo)數(shù)在單調(diào)性中的應(yīng)用,關(guān)鍵構(gòu)造函數(shù),掌握函數(shù)的奇偶性和單調(diào)性,屬于中檔題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)函數(shù)y=f(x)的定義域?yàn)镈,值域?yàn)锳,如果存在函數(shù)x=g(t),使得函數(shù)y=f[g(t)]的值域仍是A,那么稱x=g(t)是函數(shù)y=f(x)的一個(gè)等值域變換.設(shè)f(x)=log2x的定義域?yàn)閇2,8],已知x=g(t)=$\frac{{m{t^2}-nt+m}}{{{t^2}+1}}({m∈R,n∈{R_+}})$是y=f(x)的一個(gè)等值變換,且函數(shù)y=f[g(t)]的定義域?yàn)镽,則m=5,n=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在如圖的幾何體中,四邊形CDEF為正方形,四邊形ABCD為等腰梯形,AB∥CD,AB=2BC,∠ABC=60°,AC⊥FB.
(1)求證:AC⊥平面FBC;
(2)求平面CBF與平面ADE所成夾角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=x2-ax+lnx(a∈R).
(1)若函數(shù)f(x)在x=1處取得極小值,求函數(shù)f(x)的極大值;
(2)若x∈(0,e]時(shí),函數(shù)f(x)≤1恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.函數(shù)f(x)=$\frac{a+lnx}{x}$,若曲線f(x)在點(diǎn)(e,f(e))處的切線與直線e2x-y+e=0垂直(其中e為自然對(duì)數(shù)的底數(shù)).
(1)求f(x)的單調(diào)區(qū)間和極值.
(2)求證:當(dāng)x>1時(shí),$\frac{f(x)}{e+1}$>$\frac{2{e}^{x-1}}{(x+1)(x{e}^{x}+1)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.極坐標(biāo)系中,圓心在$(1,\frac{π}{4})$,半徑為1的圓的方程為(  )
A.$ρ=2sin(θ-\frac{π}{4})$B.$ρ=2cos(θ-\frac{π}{4})$C.$ρcos(θ-\frac{π}{4})=2$D.$ρsin(θ-\frac{π}{4})=2$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在正三棱柱ABC-A1B1C1中,AB=2,點(diǎn)D、E分別是棱AB、BB1的中點(diǎn),若DE⊥EC1,則側(cè)棱AA1的長為( 。
A.1B.2C.$\sqrt{2}$D.$2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)A在橢圓上,AF2⊥x軸,若$\frac{{|A{F_1}|}}{{|A{F_2}|}}=\frac{5}{3}$,則橢圓的離心率等于( 。
A.2B.$\frac{1}{5}$C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.橢圓C的方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),F(xiàn)1,F(xiàn)2分別是它的左、右焦點(diǎn),已知橢圓C過點(diǎn)(0,1),且離心率e=$\frac{2\sqrt{2}}{3}$.
(1)求橢圓C的方程;
(2)如圖,設(shè)橢圓的左、右頂點(diǎn)分別為A、B,直線l的方程為x=4,P是橢圓上異于A、B的任意一點(diǎn),直線PA、PB分別交直線l于D、E兩點(diǎn),求證$\overrightarrow{{F}_{1}D}$•$\overrightarrow{{F}_{2}E}$為一定值,并求出這一定值;
(3)是否存在過點(diǎn)Q(1,0)的直線m(與x軸不垂直)與橢圓C交于M、N兩點(diǎn),使 $\overrightarrow{M{F}_{1}}$⊥$\overrightarrow{N{F}_{1}}$,若存在,求出l的斜率,若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案