【題目】已知集合是滿足下列性質(zhì)的函數(shù)的全體:存在實數(shù),對于定義域內(nèi)的任意,均有成立,稱數(shù)對為函數(shù)伴隨數(shù)對”.

1)判斷函數(shù)是否屬于集合,并說明理由;

2)試證明:假設(shè)為定義在上的函數(shù),且,若其伴隨數(shù)對滿足,求證:恒成立;

3)若函數(shù),求滿足條件的函數(shù)的所有伴隨數(shù)對”.

【答案】1;見解析(2)見解析;(3,

【解析】

1)根據(jù)題意利用恒成立,直接解出;(2)把替換成,根據(jù)成立,得出結(jié)論;(3,利用三角函數(shù)化簡得到對任意的都成立,所以,根據(jù)題意推出,再求出結(jié)論.

解:(1)由

可得,即為成立,

需滿足條件,解得,因存在,所以

2)證明:由,對于定義域內(nèi)的任意,均有成立,

所以把替換成,成立,即,因為,所以,

所以,由的任意性及其存在,所以恒成立.

3)由,得,

展開得,

所以,

對任意的都成立,所以,

,由于(當(dāng)且僅當(dāng)時,等號成立),

所以,又因為,故

當(dāng)時,,;

當(dāng)時,,

故函數(shù)的“伴隨數(shù)對”為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列命題:

①函數(shù)是奇函數(shù);

②將函數(shù)的圖像向左平移個單位長度,得到函數(shù)的圖像;

③若是第一象限角且,則

是函數(shù)的圖像的一條對稱軸;

⑤函數(shù)的圖像關(guān)于點中心對稱。

其中,正確的命題序號是______________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象與軸相切,且切點在軸的正半軸上.

1)求曲線,直線軸圍成圖形的面積

2若函數(shù)上的極小值不大于,的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)求證:

2)若函數(shù)的圖象與直線沒有交點,求實數(shù)的取值范圍;

3)若函數(shù),則是否存在實數(shù),使得的最小值為?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:

日期

1月10日

2月10日

3月10日

4月10日

5月10日

6月10日

晝夜溫差

x (℃)

10

11

13

12

8

6

就診人數(shù)

y()

22

25

29

26

16

12

該興趣小組確定的研究方案是:先用2、3、4、5月的4組數(shù)據(jù)求線性回歸方程,再用1月和6月的2組數(shù)據(jù)進(jìn)行檢驗.

(1)請根據(jù)2、3、4、5月的數(shù)據(jù),求出y關(guān)于x的線性回歸方程 ;

(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認(rèn)為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?

(參考公式: ,

參考數(shù)據(jù):11×25+13×29+12×26+8×16=1092,112+132+122+82=498.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某盒子中共有個小球,編號為號至號,其中有個紅球、個黃球和個綠球,這些球除顏色和編號外完全相同.

1)若從盒中一次隨機(jī)取出個球,求取出的個球中恰有個顏色相同的概率;

2)若從盒中逐一取球,每次取后立即放回,共取次,求恰有次取到黃球的概率;

3)若從盒中逐一取球,每次取后不放回,記取完黃球所需次數(shù)為,求隨機(jī)變量的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知以M為圓心的圓M:x2+y2-12x-14y+60=0及其上一點A(2,4).

(1)設(shè)圓N與x軸相切,與圓M外切,且圓心N在直線x=6上,求圓N的標(biāo)準(zhǔn)方程;

(2)設(shè)平行于OA的直線l與圓M相交于B,C兩點,且BC=OA,

求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,記函數(shù)的圖象為曲線C1,函數(shù)的圖象為曲線C2

(Ⅰ)比較f2)和1的大小,并說明理由;

(Ⅱ)當(dāng)曲線C1在直線y1的下方時,求x的取值范圍;

(Ⅲ)證明:曲線C1C2沒有交點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在極坐標(biāo)系中,直線的極坐標(biāo)方程為,現(xiàn)以極點為原點,極軸為軸的非負(fù)半軸建立平面直角坐標(biāo)系,曲線的參數(shù)方程為為參數(shù)).

(1)求直線的直角坐標(biāo)方程和曲線的普通方程;

(2)若曲線為曲線關(guān)于直線的對稱曲線,點,分別為曲線、曲線上的動點,點坐標(biāo)為,求的最小值.

查看答案和解析>>

同步練習(xí)冊答案