【題目】已知函數(shù)f(x)=x2﹣2x+k,且log2f(a)=2,f(log2a)=k,a>0,且a≠1.
(1)求a,k的值;
(2)當(dāng)x為何值時(shí),f(logax)有最小值?求出該最小值.

【答案】
(1)解:因?yàn)閘og2f(a)=2,f(log2a)=k所以log2(a2﹣2a+k)=2,log2a=0,或log2a=2

a2﹣2a+k=4,a=1,或a=4,

又a>0,且a≠1,

所以a=4,k=﹣4


(2)解:f(logax)=f(log4x)=(log4x)2﹣2log4x﹣4=(log2x﹣1)2﹣5.

所以當(dāng)log4x=1,即x=4時(shí),f(logax)有最小值﹣5


【解析】(1)因?yàn)閘og2f(a)=2,f(log2a)=k,所以log2(a2﹣2a+k)=2,log2a=0,或log2a=2,解得a,k的值;(2)f(logax)=f(log4x)=(log4x)2﹣2log4x﹣4=(log2x﹣1)2﹣5,結(jié)合二次函數(shù)的圖像和性質(zhì),可得函數(shù)的最小值.
【考點(diǎn)精析】本題主要考查了二次函數(shù)的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握當(dāng)時(shí),拋物線開(kāi)口向上,函數(shù)在上遞減,在上遞增;當(dāng)時(shí),拋物線開(kāi)口向下,函數(shù)在上遞增,在上遞減才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐中, 平面 , , , 的中點(diǎn), 為棱上一點(diǎn).

(Ⅰ)當(dāng)為何值時(shí),有平面;

(Ⅱ)在(Ⅰ)的條件下,求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,且兩個(gè)坐標(biāo)系取相等的長(zhǎng)度單位,已知直線的參數(shù)方程為參數(shù))曲線的極坐標(biāo)方程為.

(1)求直線的普通方程和曲線的直角坐標(biāo)方程;

(2)設(shè)直線與曲線相交于兩點(diǎn),當(dāng)變化時(shí),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】高考復(fù)習(xí)經(jīng)過(guò)二輪“見(jiàn)多識(shí)廣”之后,為了研究考前“限時(shí)搶分”強(qiáng)化訓(xùn)練次數(shù)與答題正確率﹪的關(guān)系,對(duì)某校高三某班學(xué)生進(jìn)行了關(guān)注統(tǒng)計(jì),得到如下數(shù)據(jù):

1

2

3

4

20

30

50

60

(1)求關(guān)于的線性回歸方程,并預(yù)測(cè)答題正確率是100﹪的強(qiáng)化訓(xùn)練次數(shù);

(2)若用表示統(tǒng)計(jì)數(shù)據(jù)的“強(qiáng)化均值”(精確到整數(shù)),若“強(qiáng)化均值”的標(biāo)準(zhǔn)差在區(qū)間內(nèi),則強(qiáng)化訓(xùn)練有效,請(qǐng)問(wèn)這個(gè)班的強(qiáng)化訓(xùn)練是否有效?

附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:

, ,

樣本數(shù)據(jù)的標(biāo)準(zhǔn)差為:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),且.

(1)求函數(shù)的極值;

(2)當(dāng)時(shí),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=﹣x2+2x+5,令g(x)=(2﹣2a)x﹣f(x)
(1)若函數(shù)g(x)在x∈[0,2]上是單調(diào)增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)求函數(shù)g(x)在x∈[0,2]的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐中,底面為正方形, 平面, , , 分別是, 的中點(diǎn).

(Ⅰ)求證: 平面

(Ⅱ)求三棱錐的體積;

(Ⅲ)求證:平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=mx2﹣2x+1有且僅有一個(gè)為正實(shí)數(shù)的零點(diǎn),則實(shí)數(shù)m的取值范圍是(
A.(﹣∞,1]
B.(﹣∞,0]∪{1}
C.(﹣∞,0)∪(0,1]
D.(﹣∞,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線.

(1)當(dāng)時(shí),求曲線在處的切線方程;

2)過(guò)點(diǎn)作曲線的切線,若所有切線的斜率之和為1,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案