【題目】在四棱錐中,底面為正方形, 平面, , , 分別是, 的中點(diǎn).
(Ⅰ)求證: 平面;
(Ⅱ)求三棱錐的體積;
(Ⅲ)求證:平面平面.
【答案】(Ⅰ)詳見解析(Ⅱ)(Ⅲ)詳見解析
【解析】試題分析:
(Ⅰ)證明:連接,與交于點(diǎn),連接,易證,可知平面.
(Ⅱ)由題可求 ,進(jìn)而證明.,則三棱錐的體積可求;
(Ⅲ)首先證明平面,又,即平面,,所以平面平面.
試題解析:(Ⅰ)證明:連接,與交于點(diǎn),連接,
在中, , 分別是, 的中點(diǎn),
所以,
又因?yàn)?/span>平面, 平面,
所以平面.
(Ⅱ)解:因?yàn)?/span>平面,所以為棱錐的高.
因?yàn)?/span>,底面是正方形,
所以 ,
因?yàn)?/span>為中點(diǎn),所以,
所以.
(Ⅲ)證明:因?yàn)?/span>平面, 平面,
所以,
在等腰直角中, ,
又, 平面, 平面,
所以平面,
又,
所以平面,
又平面,
所以平面平面.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=loga(3﹣ax)(a>0,a≠1)
(1)當(dāng)a=3時(shí),求函數(shù)f(x)的定義域;
(2)若g(x)=f(x)﹣loga(3+ax),請判定g(x)的奇偶性;
(3)是否存在實(shí)數(shù)a,使函數(shù)f(x)在[2,3]遞增,并且最大值為1,若存在,求出a的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣2x+k,且log2f(a)=2,f(log2a)=k,a>0,且a≠1.
(1)求a,k的值;
(2)當(dāng)x為何值時(shí),f(logax)有最小值?求出該最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料,回答后面問題:
在2014年12月30日播出的“新聞直播間”節(jié)目中,主持人說:“……加入此次亞航失聯(lián)航班被證實(shí)失事的話,2014年航空事故死亡人數(shù)將達(dá)到1320人.盡管如此,航空安全專家還是提醒:飛機(jī)仍是相對安全的交通工具.①世界衛(wèi)生組織去年公布的數(shù)據(jù)顯示,每年大約有124萬人死于車禍,而即使在航空事故死亡人數(shù)最多的一年,也就是1972年,其死亡數(shù)字也僅為3346人;②截至2014年9月,每百萬架次中有2.1次(指飛機(jī)失事),乘坐汽車的百萬人中其死亡人數(shù)在100人左右.”
對上述航空專家給出的①、②兩段表述(劃線部分),你認(rèn)為不能夠支持“飛機(jī)仍是相對安全的交通工具”的所有表述序號為__________,你的理由是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=
(1)判斷函數(shù)f(x)的奇偶性,并證明.
(2)求函數(shù)f(x)的單調(diào)性及值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下四個(gè)命題,其中正確的個(gè)數(shù)有( )
①由獨(dú)立性檢驗(yàn)可知,有的把握認(rèn)為物理成績與數(shù)學(xué)成績有關(guān),某人數(shù)學(xué)成績優(yōu)秀,則他有99%的可能物理優(yōu)秀.
②兩個(gè)隨機(jī)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對值越接近于1;
③在線性回歸方程中,當(dāng)解釋變量每增加一個(gè)單位時(shí),預(yù)報(bào)變量平均增加0.2個(gè)單位;
④對分類變量與,它們的隨機(jī)變量的觀測值來說, 越小,“與有關(guān)系”的把握程度越大.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=log2 . (Ⅰ)判斷f(x)奇偶性并證明;
(Ⅱ)用單調(diào)性定義證明函數(shù)g(x)= 在函數(shù)f(x)定義域內(nèi)單調(diào)遞增,并判斷f(x)=log2 在定義域內(nèi)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若集合A={x|kx2﹣2x﹣1=0}只有一個(gè)元素,則實(shí)數(shù)k的取值集合為( )
A.{﹣1}
B.{0}
C.{﹣1,0}
D.(﹣∞,﹣1]∪{0}
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com