14.已知點A(-1,2),B(2,3),若直線l:kx-y-k+1=0與線段AB相交,則實數(shù)k的取值范圍是(  )
A.(-∞,-$\frac{1}{2}$]∪[2,+∞)B.[{-$\frac{1}{2}$,2}]C.[-2,$\frac{1}{2}$]D.(-∞,-2]∪[$\frac{1}{2}$,+∞)

分析 根據(jù)題意,分析可得A、B在直線的異側(cè)或在直線上,進而可得[k×(-1)-2-k+1]×[2k-3-k+1]≤0,解可得k的取值范圍,即可得答案.

解答 解:根據(jù)題意,若直線l:kx-y-k+1=0與線段AB相交,則A、B在直線的異側(cè)或在直線上,
則有[k×(-1)-2-k+1]×[2k-3-k+1]≤0,
即(2k+1)(k-2)≥0,
解可得k≤-$\frac{1}{2}$或k≥2,即k的取值范圍是(-∞,-$\frac{1}{2}$]∪[2,+∞);
故選:A.

點評 本題考查一元二次不等式表示平面區(qū)域,注意直線與線段AB相交,即A、B在直線的異側(cè)或在直線上.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

4.若函數(shù)f(x)=$\frac{1}{x}$(x>0),g(x)=log2(2-|x+1|)
(1)寫出函數(shù)g(x)的單調(diào)區(qū)間.
(2)若y=a 與函數(shù)g(x)的圖象恰有1個公共點M,N 是f(x)圖象上的動點.求|MN|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.某幾何體的三視圖如圖所示,則其體積為( 。
A.4B.8C.$\frac{4}{3}$D.$\frac{8}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.下列結(jié)論為真的個數(shù)是( 。
(1)“x2+2x-3<0”是命題
(2)命題“若p,則q”的否命題是“若p,則¬q”
(3)當q是p的必要條件時,p是q的充分條件
(4)“若p不成立,則q不成立”等價于“若q成立,則p成立”
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知$\overrightarrow a=(2cosx,2sinx)$,$\overrightarrow b=(sin(x-\frac{π}{6}),cos(x-\frac{π}{6}))$,函數(shù)f(x)=cos<$\overrightarrow{a}$,$\overrightarrow$>.
(Ⅰ)求函數(shù)f(x)零點;
(Ⅱ)若△ABC的三內(nèi)角A、B、C的對邊分別是a、b、c,且f(A)=1,求$\frac{b+c}{a}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.7人站成兩排隊列,前排3人,后排4人.現(xiàn)將甲、乙、丙三人加入隊列,前排加一人,后排加兩人,其他人保持相對位置不變,則不同的加入方法種數(shù)為360.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.如圖是一個幾何體在網(wǎng)格紙上的三視圖,若面積最小網(wǎng)格均是邊長為1的小正方形,則該幾何體的體積為( 。
A.6B.8C.12D.16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.分析法證明命題中所說的“執(zhí)果索因”是指尋求使命題成立的( 。
A.必要條件B.充分條件C.充要條件D.必要或充分條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.請按要求完成下列兩題.
(Ⅰ)求由直線$x=-\frac{π}{3}$,$x=\frac{π}{3}$,y=0與曲線y=cosx所圍成的封閉圖形的面積.
(Ⅱ)求由直線y=x-4,曲線$y=\sqrt{2x}$及x軸所圍成的封閉圖形的面積.

查看答案和解析>>

同步練習冊答案