5.某幾何體的三視圖如圖所示,則其體積為( 。
A.4B.8C.$\frac{4}{3}$D.$\frac{8}{3}$

分析 通過三視圖復(fù)原的幾何體是四棱錐,結(jié)合三視圖的數(shù)據(jù),求出幾何體的體積.

解答 解:由題意三視圖可知,幾何體是四棱錐,底面邊長為2的正方形,一條側(cè)棱垂直正方形的一個頂點,長度為2,
所以幾何體的體積是:$\frac{1}{3}×2×2×2$=$\frac{8}{3}$.
故選D.

點評 本題是基礎(chǔ)題,考查三視圖復(fù)原幾何體的體積的求法,考查計算能力,空間想象能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知兩定點A(-2,0),B(1,0),如果動點P滿足|PA|=$\sqrt{3}$|PB|,則點P的軌跡所包圍的圖形的面積等于$\frac{27π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在建立兩個變量y與x的回歸模型中,分別選擇了四個不同的模型,它們的相關(guān)指數(shù)如下,其中擬合效果最好的模型是( 。
A.模型1的相關(guān)指數(shù)R2為0.98B.模型2的相關(guān)指數(shù)R2為0.80
C.模型3的相關(guān)指數(shù)R2為0.54D.模型4的相關(guān)指數(shù)R2為0.35

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在梯形ABCD中,$\overrightarrow{AB}$=3$\overrightarrow{DC}$,則$\overrightarrow{BC}$等于( 。
A.-$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{AD}$B.-$\frac{2}{3}$$\overrightarrow{AB}$+$\frac{4}{3}$$\overrightarrow{AD}$C.$\frac{2}{3}$$\overrightarrow{AB}$+$\overrightarrow{AD}$D.-$\frac{2}{3}$$\overrightarrow{AB}$+$\overrightarrow{AD}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知數(shù)列{an}的前n項和為Sn,且Sn=2an-n.
(Ⅰ)證明數(shù)列{an+1}是等比數(shù)列,求數(shù)列{an}的通項公式;
(Ⅱ)記bn=$\frac{1}{{a}_{n+1}}$+$\frac{1}{{a}_{n}{a}_{n+1}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)$f(x)=lnx-\frac{1}{2}a{x^2}-2x$
(1)若函數(shù)f(x)在定義域內(nèi)單調(diào)遞增,求a的取值范圍;
(2)若$a=-\frac{1}{2}$,且關(guān)于x的方程$f(x)=-\frac{1}{2}x+b$在[1,4]恰有兩個不相等的實數(shù)根,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.集成電路E由3個不同的電子元件組成,現(xiàn)由于元件老化,3個電子元件能正常工作的概率分別降為$\frac{1}{2}$,$\frac{1}{2}$,$\frac{2}{3}$,且每個電子元件能否正常工作相互獨立.若3個電子元件中至少有2個正常工作,則E能正常工作,否則就需要維修,且維修集成電路E所需要費用為100元.
(1)求集成電路E需要維修的概率;
(2)若某電子設(shè)備共由2個集成電路E組成,設(shè)X為該電子設(shè)備需要維修集成電路所需費用.求X的分布列和均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知點A(-1,2),B(2,3),若直線l:kx-y-k+1=0與線段AB相交,則實數(shù)k的取值范圍是( 。
A.(-∞,-$\frac{1}{2}$]∪[2,+∞)B.[{-$\frac{1}{2}$,2}]C.[-2,$\frac{1}{2}$]D.(-∞,-2]∪[$\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=x3-3ax+e,g(x)=1-lnx,其中e為自然對數(shù)的底數(shù).
(Ⅰ)若曲線y=f(x)在點(1,f(1))處的切線與直線l:x+2y=0垂直,求實數(shù)a的值;
(Ⅱ)設(shè)函數(shù)$F(x)=-x[g(x)+\frac{1}{2}x-2]$,若F(x)在區(qū)間(m,m+1)(m∈Z)內(nèi)存在唯一的極值點,求m的值;
(Ⅲ)用max{m,n}表示m,n中的較大者,記函數(shù)h(x)=max{f(x),g(x)}(x>0).若函數(shù)h(x)在(0,+∞)上恰有2個零點,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案