10.雙曲線3y2-x2=1的兩條漸近線的夾角是$\frac{π}{3}$.

分析 根據(jù)題意,由雙曲線的方程計(jì)算可得其漸近線方程,由漸近線方程得到漸近線的傾斜角,即可得到結(jié)論

解答 解:根據(jù)題意,雙曲線的方程為:3y2-x2=1,
其漸近線方程為y=±$\frac{\sqrt{3}}{3}$x,
直線y=$\frac{\sqrt{3}}{3}$x的傾斜角為$\frac{π}{6}$,直線y=-$\frac{\sqrt{3}}{3}$x的傾斜角為$\frac{5π}{6}$,
則直線y=$\frac{\sqrt{3}}{3}$x與y=-$\frac{\sqrt{3}}{3}$x的夾角為$\frac{π}{3}$,
故答案為:$\frac{π}{3}$.

點(diǎn)評 本題考查雙曲線的幾何性質(zhì),注意直線的夾角的取值范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)x,y是正數(shù),且x,a1,a2,y成等差數(shù)列,x,b1,b2,y成等比數(shù)列,則$\frac{_{1}_{2}}{({a}_{1}+{a}_{2})^{2}}$的最大值是$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.某三棱柱的三視圖如圖所示,該三棱柱的外接球的表面積為(  )
A.32+8$\sqrt{5}$B.36πC.18πD.$\frac{40\sqrt{10}}{3}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.求下列不等式的解集.
(1)-2x2+x<-3
(2)$\frac{x+1}{x-2}$≤2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.${cos^2}\frac{3π}{8}-{sin^2}\frac{3π}{8}$=-$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.一條直線a上的3個(gè)點(diǎn)A、B、C到平面M的距離都為1,這條直線和平面的關(guān)系是平行.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.135°的圓心角所對的弧長為3π,則圓的半徑是4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)復(fù)數(shù)z1和z2關(guān)于虛軸對稱且z1=2+i,那么z1z2等于( 。
A.-5B.5C.-4D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.己知直線2x-y-1=0與直線x-2y+1=0交于點(diǎn)P.
(1)求過點(diǎn)P且垂直于直線3x+4y-15=0的直線l1的方程;(結(jié)果寫成直線方程的一般式)
(2)求過點(diǎn)P并且在兩坐標(biāo)軸上截距相等的直線l2方程(結(jié)果寫成直線方程的一般式)

查看答案和解析>>

同步練習(xí)冊答案